-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnotes.lyx
7839 lines (5672 loc) · 140 KB
/
notes.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\Var}{\text{Var}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\E}{\text{E}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\norm}[1]{\left\Vert #1\right\Vert }
\end_inset
\begin_inset FormulaMacro
\newcommand{\transpose}[1]{{#1}^{\text{T}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Cov}{\text{Cov}}
\end_inset
\end_layout
\begin_layout Section
Identities, approximations, limits
\end_layout
\begin_layout Itemize
Identity:
\begin_inset Formula $\lim_{x\rightarrow\infty}\left(1+\frac{a}{x}\right)^{x}=e^{a}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $e^{x}>1+x$
\end_inset
for
\begin_inset Formula $x>0$
\end_inset
and
\begin_inset Formula $e^{x}\approx1+x$
\end_inset
for
\begin_inset Formula $-.1<x<.1$
\end_inset
\end_layout
\begin_layout Itemize
Euler's identity:
\begin_inset Formula $e^{i\pi}+1=0$
\end_inset
(from
\begin_inset Formula $e^{ix}=\cos x+i\sin x$
\end_inset
)
\end_layout
\begin_layout Section
General
\end_layout
\begin_layout Itemize
geometric mean
\begin_inset Formula $\left(\prod_{i}x_{i}\right)^{\frac{1}{n}}$
\end_inset
is exp of arith mean of logs,
\begin_inset Formula $\exp\left(\frac{1}{n}\sum_{i}\log x_{i}\right)$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
eg annualizing compounding: given annual growths
\begin_inset Formula $a,b,c>1$
\end_inset
and initial price
\begin_inset Formula $p_{0}$
\end_inset
,
\begin_inset Formula $p_{3}=abcp_{0}=\mu^{3}p_{0}$
\end_inset
where geometric mean
\begin_inset Formula $\mu=\sqrt[3]{abc}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
harmonic mean
\begin_inset Formula $\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{-1}\right)^{-1}$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
if
\begin_inset Formula $x_{i}$
\end_inset
subject to (arithmetic-)mean-preserving spread, harmonic mean decreases
\end_layout
\begin_layout Itemize
preferable way to avg multiples, e.g.
P/E ratio
\end_layout
\begin_layout Itemize
vs arith mean
\end_layout
\begin_deeper
\begin_layout Itemize
A travels 20mph for 1h then 30mph for 1h, avg speed is arith mean
\end_layout
\begin_layout Itemize
A travels 20mph for 1mi then 30mph for 1mi, avg speed is harmonic mean
\end_layout
\end_deeper
\begin_layout Itemize
F-1 score is harmonic mean of precision & recall
\end_layout
\end_deeper
\begin_layout Itemize
power mean
\begin_inset Formula $M^{r}\left(\left\{ x_{i}\right\} \right)=\left(\frac{1}{n}\sum_{i}x_{i}^{r}\right)^{\frac{1}{r}}$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $r=-1$
\end_inset
harmonic,
\begin_inset Formula $r=0$
\end_inset
geom,
\begin_inset Formula $r=1$
\end_inset
arith,
\begin_inset Formula $r=2$
\end_inset
quadratic (root mean square),
\begin_inset Formula $r=-\infty$
\end_inset
min,
\begin_inset Formula $r=\infty$
\end_inset
max
\end_layout
\end_deeper
\begin_layout Itemize
Stirling's approx:
\begin_inset Formula $\ln n!=n\ln n-n+O\left(\log n\right)$
\end_inset
where last term is
\begin_inset Formula $\frac{1}{2}\ln\left(2\pi n\right)$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
Or,
\begin_inset Formula $\lim_{n\rightarrow\infty}\frac{n!}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}}=1$
\end_inset
or
\begin_inset Formula $n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Taylor series: represent function using derivatives at some point
\begin_inset Formula $a$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $f\left(x\right)=f\left(a\right)+\frac{f'\left(a\right)}{1!}\left(x-a\right)+\frac{f''\left(a\right)}{2!}\left(x-a\right)^{2}+\frac{f^{\left(3\right)}\left(a\right)}{3!}\left(x-a\right)^{3}+\dots=\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(a\right)}{n!}\left(x-a\right)^{n}$
\end_inset
\end_layout
\begin_layout Itemize
Maclaurin series is Taylor series at
\begin_inset Formula $a=0$
\end_inset
\end_layout
\begin_layout Itemize
common Maclaurin series
\end_layout
\begin_layout Itemize
of polynomial is the polynomial
\end_layout
\begin_layout Itemize
\begin_inset Formula $\left(1-x\right)^{-1}=1+x+x^{2}+x^{3}+\dots$
\end_inset
\end_layout
\begin_layout Itemize
Integral of above is
\begin_inset Formula $\log\left(1-x\right)=-x-\frac{1}{2}x^{2}-\frac{1}{3}x^{3}-\dots$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\dots$
\end_inset
\end_layout
\end_deeper
\begin_layout Section
Information Theory
\end_layout
\begin_layout Itemize
surprisal:
\begin_inset Formula $-\log P\left(x\right)=\log\frac{1}{P\left(x\right)}$
\end_inset
; in bits; additive; used in entropy, KLIC, etc.
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $P\left(x\right)=\frac{1}{n}\implies-\log P\left(x\right)=n$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
entropy
\begin_inset Formula $H\left(X\right)=\E\left[I\left(X\right)\right]=-\sum_{x}p\left(x\right)\log p\left(x\right)\ge0$
\end_inset
(expected
\emph on
information content
\emph default
)
\end_layout
\begin_deeper
\begin_layout Itemize
lower prob events have higher information content
\end_layout
\begin_layout Itemize
measured in bits
\end_layout
\end_deeper
\begin_layout Itemize
mutual information
\begin_inset Formula $I\left(X;Y\right)=\sum_{y}\sum_{x}p_{X,Y}\left(x,y\right)\log\frac{p_{X,Y}\left(x,y\right)}{p_{X}\left(x\right)p_{Y}\left(y\right)}\ge0$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
self-information is entropy:
\begin_inset Formula $I\left(X;X\right)=H\left(X\right)$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $I\left(X;Y\right)=H\left(X\right)-H\left(X\mid Y\right)=H\left(Y\right)-H\left(Y\mid X\right)=H\left(X\right)+H\left(Y\right)-H\left(X,Y\right)=H\left(X,Y\right)-H\left(X\mid Y\right)-H\left(Y\mid X\right)$
\end_inset
\end_layout
\begin_layout Itemize
symmetric uncertainy
\begin_inset Formula $U\left(X,Y\right)=2\frac{I\left(X;Y\right)}{H\left(X\right)+H\left(Y\right)}\in\left[0,1\right]$
\end_inset
\end_layout
\begin_layout Itemize
relationship to correlation
\end_layout
\begin_deeper
\begin_layout Itemize
MI measures general dependence, correlation measures linear dependence;
MI is better for measuring dependence
\end_layout
\begin_layout Itemize
MI applicable to symbolic sequences; correlation applicable only to numerical
sequences; but MI must estimate continuous distributions
\end_layout
\begin_layout Itemize
\begin_inset Flex URL
status collapsed
\begin_layout Plain Layout
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D065413DAA29F4C500219B2822
1E904A?doi=10.1.1.15.672&rep=rep1&type=pdf
\end_layout
\end_inset
\end_layout
\end_deeper
\end_deeper
\begin_layout Itemize
Kullback–Leibler divergence aka KLIC: non-symmetric measure of difference
btwn dists
\begin_inset Formula $P,Q$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
expected # extra bits to code samples from
\begin_inset Formula $P$
\end_inset
when using code based on
\begin_inset Formula $Q$
\end_inset
rather than on
\begin_inset Formula $P$
\end_inset
\end_layout
\begin_layout Itemize
alt intuition: avg likelihood of data distributed as
\begin_inset Formula $P$
\end_inset
given
\begin_inset Formula $Q$
\end_inset
as model:
\begin_inset Formula $D_{\text{KL}}\left(P\|Q\right)=-\log\bar{L}$
\end_inset
where
\begin_inset Formula $L=\Pr\left[X\sim P\mid Q\right]$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $D_{\mbox{KL}}\left(P\parallel Q\right)=\sum_{i}P\left(i\right)\log\frac{P\left(i\right)}{Q\left(i\right)}=\sum_{i}P\left(i\right)\left(\log Q\left(i\right)-\log P\left(i\right)\right)$
\end_inset
; integral for continuous
\end_layout
\begin_layout Itemize
\begin_inset Formula $D_{\mbox{KL}}\ge0$
\end_inset
;
\begin_inset Formula $D_{\mbox{KL}}=0$
\end_inset
for
\begin_inset Formula $P=Q$
\end_inset
; asymmetric
\end_layout
\begin_layout Itemize
mutual information
\begin_inset Formula $I\left(X;Y\right)=D_{\text{KL}}\left(\Pr\left[X,Y\right]\|\Pr\left[X\right]\Pr\left[Y\right]\right)$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Flex URL
status collapsed
\begin_layout Plain Layout
http://www.snl.salk.edu/~shlens/kl.pdf
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
normalized compression distance (NCD):
\begin_inset Formula $NCD\left(x,y\right)=\frac{C\left(xy\right)-\min\left\{ C\left(x\right),C\left(y\right)\right\} }{\max\left\{ C\left(x\right),C\left(y\right)\right\} }$
\end_inset
\end_layout
\begin_layout Section
Finance
\end_layout
\begin_layout Itemize
rate of return (ROR) aka return on investment (ROI) aka return
\end_layout
\begin_deeper
\begin_layout Itemize
let
\begin_inset Formula $V_{f}$
\end_inset
be final value,
\begin_inset Formula $V_{i}$
\end_inset
be initial value
\end_layout
\begin_layout Itemize
ratio:
\begin_inset Formula $r=\frac{V_{f}}{V_{i}}$
\end_inset
\end_layout
\begin_layout Itemize
arithmetic return aka yield:
\begin_inset Formula $r_{\text{arith}}=\frac{V_{f}-V_{i}}{V_{i}}=r-1$
\end_inset
\end_layout
\begin_layout Itemize
logarithmic/continuous compound return:
\begin_inset Formula $r_{\log}=\ln\frac{V_{f}}{V_{i}}=\ln\left(1+r\right)$
\end_inset
\end_layout
\begin_layout Itemize
compound annual growth rate (CAGR):
\begin_inset Formula $\left(\frac{V_{f}}{V_{i}}\right)^{\frac{1}{n}}-1$
\end_inset
where
\begin_inset Formula $n$
\end_inset
is # years
\end_layout
\begin_layout Itemize
annual percentage rate (APR)
\end_layout
\end_deeper
\begin_layout Section
Signal Processing
\end_layout
\begin_layout Itemize
DFT:
\begin_inset Formula $X_{k}=\sum_{n=0}^{N-1}x_{n}\exp\left(-\frac{2\pi i}{N}kn\right)$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
IDFT:
\begin_inset Formula $X_{k}=\frac{1}{N}\sum_{n=0}^{N-1}x_{n}\exp\left(i2\pi k\frac{n}{N}\right)$
\end_inset
(normalized, changed exp sign)
\end_layout
\begin_layout Itemize
interesting presentation: strength of freq
\begin_inset Formula $k$
\end_inset
is distance from origin of the midpoint of your signal's points as the
signal are spun around a circle
\begin_inset Flex URL
status collapsed
\begin_layout Plain Layout
http://altdevblogaday.org/2011/05/17/understanding-the-fourier-transform/
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
IIR, FIR: TODO
\end_layout
\begin_layout Section
Probability
\end_layout
\begin_layout Subsection
Distributions
\end_layout
\begin_layout Itemize
Binomial: # successes in
\begin_inset Formula $n$
\end_inset
Bernoulli trials each with success prob
\begin_inset Formula $p$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $\Pr\left[X=k\right]={n \choose k}p^{k}\left(1-p\right)^{n-k}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=np$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=np\left(1-p\right)$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Geometric: # trials until Bernoulli success with prob
\begin_inset Formula $p$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $\Pr\left[X=k\right]=\left(1-p\right)^{k-1}p$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=\frac{1}{p}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=\frac{1-p}{p^{2}}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Hypergeom: # successes in
\begin_inset Formula $n$
\end_inset
draws from population of
\begin_inset Formula $N$
\end_inset
containing
\begin_inset Formula $m$
\end_inset
successes
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $\Pr\left[X=k\right]=\frac{{m \choose k}{N-m \choose n-k}}{{N \choose m}}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=n\frac{m}{N}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=n\frac{m}{N}\frac{\left(N-m\right)}{N}\frac{N-n}{N-1}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Negative binomial: # successes in
\begin_inset Formula $n$
\end_inset
Bernoulli trials before
\begin_inset Formula $r$
\end_inset
failures (generalization of geom)
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $\Pr\left[X=k\right]={k+r-1 \choose k}\left(1-p\right)^{r}p^{k}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=\frac{pr}{1-p}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=\frac{pr}{\left(1-p\right)^{2}}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Poisson: # arrivals in sliver of time (infinite-granularity binomial) assuming
mean
\begin_inset Formula $\lambda$
\end_inset
arrival rate
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $\Pr\left[X=k\right]=\frac{\lambda^{k}}{k!}e^{-\lambda}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=\lambda$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=\lambda$
\end_inset
\end_layout
\begin_layout Itemize
Simple interesting proof from binomial
\end_layout
\end_deeper
\begin_layout Itemize
Normal: mean
\begin_inset Formula $\mu$
\end_inset
, standard deviation
\begin_inset Formula $\sigma$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $f\left(x\right)=\frac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left(-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}\right)=\dots\exp\left(-\frac{Z^{2}}{2}\right)$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=\mu$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=\sigma^{2}$
\end_inset
\end_layout
\begin_layout Itemize
Empirical rule: z-scores of 1/2/3 span 68%/95%/99.7%
\end_layout
\begin_layout Itemize
Is its own Fourier transform
\end_layout
\end_deeper
\begin_layout Itemize
Beta: density shape over
\begin_inset Formula $\left(0,1\right)$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
uniform dist is a beta dist
\end_layout
\begin_layout Itemize
params
\begin_inset Formula $a,b$
\end_inset
s.t.
\begin_inset Formula $\text{beta}\left[a,b\right]\left(\theta\right)=\alpha\theta^{a-1}\left(1-\theta\right)^{b-1}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $E\left[X\right]=\frac{a}{a+b}$
\end_inset
: higher
\begin_inset Formula $a$
\end_inset
suggests
\begin_inset Formula $\Theta$
\end_inset
closer to 1 than 0
\end_layout
\begin_layout Itemize
conjugate prior for Bernoulli/binomial dists
\end_layout
\end_deeper
\begin_layout Itemize
Exponential: time btwn Poisson process events
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $f\left(x\right)=\begin{cases}
\lambda e^{-\lambda x}, & x\ge0\\
0, & x<0
\end{cases}$
\end_inset
;
\begin_inset Formula $\Pr\left[X<x\right]=\begin{cases}
1-e^{-\lambda x}, & x\ge0\\
0, & x<0
\end{cases}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\E\left[X\right]=\frac{1}{\lambda}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\Var\left[X\right]=\frac{1}{\lambda^{2}}$
\end_inset
\end_layout
\begin_layout Itemize
memoryless:
\begin_inset Formula $\Pr\left[X>s\mid X>t\right]=\Pr\left[X>s-t\right]$
\end_inset
/ constant event rate
\begin_inset Formula $\lambda$
\end_inset
/ constant hazard
\begin_inset Formula $\lambda$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Gamma: scale
\begin_inset Formula $\theta$
\end_inset
and shape
\begin_inset Formula $k$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
models waiting times: sum of
\begin_inset Formula $k$
\end_inset
indep exponentially distributed RVs, each with mean
\begin_inset Formula $\theta$
\end_inset
\end_layout
\begin_layout Itemize
also the sample variance of normal data
\end_layout
\begin_layout Itemize
conjugate prior for many dists TODO