forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_helper.cc
523 lines (497 loc) · 16.7 KB
/
benchmark_helper.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chrono>
#include <fstream>
#include <iostream>
#include <string>
#include <thread>
#ifdef _WIN32
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#include <psapi.h>
#endif
#include <binaries/benchmark_helper.h>
#include "caffe2/core/blob_serialization.h"
#ifdef __CUDA_ARCH__
#include "caffe2/core/context_gpu.h"
#endif
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/utils/bench_utils.h"
#include "caffe2/utils/string_utils.h"
#include <observers/net_observer_reporter_print.h>
#include <observers/observer_config.h>
#include <observers/perf_observer.h>
#if defined(TARGET_OS_MAC) || \
defined(TARGET_OS_IPHONE) || \
defined(TARGET_IPHONE_SIMULATOR)
#include <malloc/malloc.h>
#else
#include <malloc.h>
#endif
void observerConfig() {
caffe2::ClearGlobalNetObservers();
caffe2::AddGlobalNetObserverCreator([](caffe2::NetBase* subject) {
return std::make_unique<caffe2::PerfNetObserver>(subject);
});
caffe2::ObserverConfig::setReporter(
std::make_unique<caffe2::NetObserverReporterPrint>());
}
bool backendCudaSet(const string& backend) {
bool run_on_gpu = false;
if (backend == "cuda") {
#ifdef __CUDA_ARCH__
if (caffe2::HasCudaGPU()) {
run_on_gpu = true;
} else {
CAFFE_THROW("NO GPU support on this host machine");
}
#else
CAFFE_THROW("NO GPU support");
#endif
}
return run_on_gpu;
}
void setDeviceType(caffe2::NetDef* net_def, caffe2::DeviceType& run_dev) {
for (int j = 0; j < net_def->op_size(); j++) {
caffe2::OperatorDef* op = net_def->mutable_op(j);
op->mutable_device_option()->set_device_type(caffe2::TypeToProto(run_dev));
}
}
void setOperatorEngine(caffe2::NetDef* net_def, const string& backend) {
if (backend != "builtin") {
string engine = backend == "nnpack"
? "NNPACK"
: backend == "eigen" ? "EIGEN"
: backend == "mkl" ? "MKLDNN"
: backend == "cuda"
? "CUDA"
: backend == "dnnlowp" ? "DNNLOWP"
: backend == "dnnlowp_acc16"
? "DNNLOWP_ACC16"
: backend == "default" ? "" : "NONE";
CAFFE_ENFORCE(engine != "NONE", "Backend is not supported");
for (int i = 0; i < net_def->op_size(); i++) {
caffe2::OperatorDef* op_def = net_def->mutable_op(i);
op_def->set_engine(engine);
}
}
}
int loadInput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const string& input,
const string& input_file,
const string& input_dims,
const string& input_type) {
// How many input blobs are in the inputs
int blob_num = 1;
// Load input.
if (input.size()) {
vector<string> input_names = caffe2::split(',', input);
if (input_file.size()) {
vector<string> input_files = caffe2::split(',', input_file);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_files.size(),
"Input name and file should have the same number.");
for (int i = 0; i < input_names.size(); ++i) {
caffe2::TensorProtos tensor_protos;
CAFFE_ENFORCE(
caffe2::ReadProtoFromFile(input_files[i], &tensor_protos));
workspace->CreateBlob(input_names[i]);
tensor_protos_map.insert(std::make_pair(input_names[i], tensor_protos));
}
// Check that all blobs have the same number of entries
blob_num = tensor_protos_map[input_names[0]].protos_size();
for (int i = 1; i < input_names.size(); ++i) {
int bnum = tensor_protos_map[input_names[i]].protos_size();
CAFFE_ENFORCE_EQ(
blob_num,
bnum,
"Number of blobs are not the same for all inputs");
}
} else if (input_dims.size() || input_type.size()) {
CAFFE_ENFORCE_GE(
input_dims.size(),
0,
"Input dims must be specified when input tensors are used.");
CAFFE_ENFORCE_GE(
input_type.size(),
0,
"Input type must be specified when input tensors are used.");
vector<string> input_dims_list = caffe2::split(';', input_dims);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_dims_list.size(),
"Input name and dims should have the same number of items.");
vector<string> input_type_list = caffe2::split(';', input_type);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_type_list.size(),
"Input name and type should have the same number of items.");
for (size_t i = 0; i < input_names.size(); ++i) {
vector<string> input_dims_str = caffe2::split(',', input_dims_list[i]);
vector<int> input_dims;
for (const string& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
caffe2::Blob* blob = workspace->GetBlob(input_names[i]);
if (blob == nullptr) {
blob = workspace->CreateBlob(input_names[i]);
}
if (run_on_gpu) {
LOG(INFO) << "Running on GPU.";
#ifdef __CUDA_ARCH__
caffe2::TensorCUDA* tensor = blob->GetMutable<caffe2::TensorCUDA>();
CHECK_NOTNULL(tensor);
tensor->Resize(input_dims);
if (input_type_list[i] == "uint8_t") {
tensor->mutable_data<uint8_t>();
} else if (input_type_list[i] == "float") {
tensor->mutable_data<float>();
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
#else
CAFFE_THROW("Not support GPU on mobile.");
#endif
} else {
if (input_type_list[i] == "uint8_t") {
caffe2::int8::Int8TensorCPU* tensor =
blob->GetMutable<caffe2::int8::Int8TensorCPU>();
CHECK_NOTNULL(tensor);
tensor->t.Resize(input_dims);
tensor->t.mutable_data<uint8_t>();
} else if (input_type_list[i] == "float") {
caffe2::TensorCPU* tensor = BlobGetMutableTensor(blob, caffe2::CPU);
CHECK_NOTNULL(tensor);
tensor->Resize(input_dims);
tensor->mutable_data<float>();
} else if (input_type_list[i] == "int") {
caffe2::TensorCPU* tensor = BlobGetMutableTensor(blob, caffe2::CPU);
CHECK_NOTNULL(tensor);
tensor->Resize(input_dims);
tensor->mutable_data<int>();
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
}
}
} else {
CAFFE_THROW(
"You requested input tensors, but neither input_file nor "
"input_dims is set.");
}
}
return blob_num;
}
void fillInputBlob(
shared_ptr<caffe2::Workspace> workspace,
map<string, caffe2::TensorProtos>& tensor_protos_map,
int iteration) {
if (tensor_protos_map.empty()) {
return;
}
static caffe2::TensorDeserializer deserializer;
for (auto& tensor_kv : tensor_protos_map) {
caffe2::Blob* blob = workspace->GetBlob(tensor_kv.first);
if (blob == nullptr) {
blob = workspace->CreateBlob(tensor_kv.first);
}
// todo: support gpu and make this function a template
int protos_size = tensor_kv.second.protos_size();
if (protos_size == 1 && iteration > 0) {
// Do not override the input data if there is only one input data,
// since it will clear all caches. Rely on wipe_cache to
// clear caches
continue;
}
caffe2::TensorProto* tensor_proto =
tensor_kv.second.mutable_protos(iteration % protos_size);
BlobSetTensor(blob, deserializer.Deserialize(*tensor_proto));
// todo: for other types
}
}
void runNetwork(
shared_ptr<caffe2::Workspace> workspace,
caffe2::NetBase* net,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const bool wipe_cache,
const bool run_individual,
const bool run_on_gpu,
const bool text_output,
const int warmup,
const int iter,
const int num_blobs,
const int sleep_before_run,
const int sleep_between_iteration,
const int sleep_between_net_and_operator,
const std::string& output,
const std::string& output_folder) {
LOG(INFO) << "Starting benchmark.";
caffe2::ObserverConfig::initSampleRate(1, 1, 1, run_individual, warmup);
LOG(INFO) << "Running warmup runs.";
for (int i = 0; i < warmup; ++i) {
fillInputBlob(workspace, tensor_protos_map, i);
CAFFE_ENFORCE(net->Run(), "Warmup run ", i, " has failed.");
}
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_before_run > 0) {
std::this_thread::sleep_for(std::chrono::seconds(sleep_before_run));
}
LOG(INFO) << "Main runs.";
CAFFE_ENFORCE(
iter >= 0,
"Number of main runs should be non negative, provided ",
iter,
".");
LOG(INFO) << "net runs.";
long long duration_sum = 0;
for (int i = 0; i < iter; ++i) {
caffe2::ObserverConfig::initSampleRate(1, 1, 1, 0, warmup);
fillInputBlob(workspace, tensor_protos_map, i);
if (wipe_cache) {
caffe2::wipe_cache();
}
auto start = std::chrono::high_resolution_clock::now();
CAFFE_ENFORCE(net->Run(), "Main run ", i, " has failed.");
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(stop - start);
duration_sum += duration.count();
// Write the output for the first num_blobs times
writeOutput(
workspace,
run_on_gpu,
output,
output_folder,
text_output,
i,
num_blobs);
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_between_iteration > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_iteration));
}
}
std::cout << "Average Duration: " << (duration_sum/iter) << " us" << std::endl;
if (run_individual) {
LOG(INFO) << "operator runs.";
if (sleep_between_net_and_operator > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_net_and_operator));
}
for (int i = 0; i < iter; ++i) {
caffe2::ObserverConfig::initSampleRate(1, 1, 1, 1, warmup);
fillInputBlob(workspace, tensor_protos_map, i);
CAFFE_ENFORCE(net->Run(), "Main run ", i, " with operator has failed.");
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_between_iteration > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_iteration));
}
}
}
}
void writeOutput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
const string& output,
const string& output_folder,
const bool text_output,
const int index,
const int num_blobs) {
if (output.size() == 0) {
return;
}
string output_prefix = output_folder.size() ? output_folder + "/" : "";
vector<string> output_names = caffe2::split(',', output);
if (output == "*") {
output_names = workspace->Blobs();
}
for (const string& name : output_names) {
CAFFE_ENFORCE(
workspace->HasBlob(name),
"You requested a non-existing blob: ",
name);
if (text_output) {
if (run_on_gpu) {
#ifdef __CUDA_ARCH__
writeTextOutput<caffe2::CUDAContext, caffe2::TensorCUDA>(
workspace->GetBlob(name)->GetMutable<caffe2::TensorCUDA>(),
output_prefix,
name,
index,
num_blobs);
#else
CAFFE_THROW("Not support GPU.");
#endif
} else {
writeTextOutput<caffe2::CPUContext, caffe2::TensorCPU>(
BlobGetMutableTensor(workspace->GetBlob(name), caffe2::CPU),
output_prefix,
name,
index,
num_blobs);
}
} else {
// Do not support multiple entries per blob.
CAFFE_ENFORCE(
index == 0,
"Binary file only support one output.");
string serialized = SerializeBlob(*workspace->GetBlob(name), name);
string output_filename = output_prefix + name;
caffe2::WriteStringToFile(serialized, output_filename.c_str());
}
}
}
void logBenchmarkResult(
const std::string& type,
const std::string& metric,
const std::string& unit,
const int value) {
LOG(INFO) << caffe2::NetObserverReporterPrint::IDENTIFIER << "{"
<< "\"type\": \"" << type << "\", "
<< "\"metric\": \"" << metric << "\", "
<< "\"unit\": \"" << unit << "\", "
<< "\"value\": " << c10::to_string(value) << "}\n";
}
long getVirtualMemoryIfOptionEnabled(bool FLAGS_measure_memory) {
if (FLAGS_measure_memory) {
#if defined(TARGET_OS_IPHONE) || \
defined(TARGET_OS_MAC) || \
defined(TARGET_IPHONE_SIMULATOR)
malloc_statistics_t stats = {0};
malloc_zone_statistics(nullptr, &stats);
return stats.size_allocated;
#elif defined(_WIN32)
PROCESS_MEMORY_COUNTERS_EX pmc;
GetProcessMemoryInfo(
GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*)&pmc, sizeof(pmc));
return pmc.PrivateUsage;
#else
struct mallinfo info = mallinfo();
return info.uordblks;
#endif
}
return 0;
}
int benchmark(
int argc,
char* argv[],
const string& FLAGS_backend,
const string& FLAGS_init_net,
const string& FLAGS_input,
const string& FLAGS_input_dims,
const string& FLAGS_input_file,
const string& FLAGS_input_type,
int FLAGS_iter,
bool FLAGS_measure_memory,
const string& FLAGS_net,
const string& FLAGS_output,
const string& FLAGS_output_folder,
bool FLAGS_run_individual,
int FLAGS_sleep_before_run,
int FLAGS_sleep_between_iteration,
int FLAGS_sleep_between_net_and_operator,
bool FLAGS_text_output,
int FLAGS_warmup,
bool FLAGS_wipe_cache) {
// Check arguments to be correct
{
// Need to check whether file exists, as the file reader does not assert if
// file does not exist
std::ifstream net_file(FLAGS_net);
CAFFE_ENFORCE(net_file.good());
net_file.close();
std::ifstream init_net_file(FLAGS_init_net);
CAFFE_ENFORCE(init_net_file.good());
init_net_file.close();
if (FLAGS_input_file.size() > 0) {
vector<string> input_files = caffe2::split(',', FLAGS_input_file);
for (auto input_file : input_files) {
std::ifstream ifile(input_file);
CAFFE_ENFORCE(ifile.good());
ifile.close();
}
}
}
observerConfig();
caffe2::ShowLogInfoToStderr();
auto workspace = std::make_shared<caffe2::Workspace>(new caffe2::Workspace());
bool run_on_gpu = backendCudaSet(FLAGS_backend);
// Run initialization network, measure resources used.
long init_vmem = getVirtualMemoryIfOptionEnabled(FLAGS_measure_memory);
caffe2::NetDef init_net_def;
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_init_net, &init_net_def));
setOperatorEngine(&init_net_def, FLAGS_backend);
CAFFE_ENFORCE(workspace->RunNetOnce(init_net_def));
init_vmem = getVirtualMemoryIfOptionEnabled(FLAGS_measure_memory) - init_vmem;
map<string, caffe2::TensorProtos> tensor_protos_map;
int num_blobs = loadInput(
workspace,
run_on_gpu,
tensor_protos_map,
FLAGS_input,
FLAGS_input_file,
FLAGS_input_dims,
FLAGS_input_type);
// Run main network.
long predict_vmem = getVirtualMemoryIfOptionEnabled(FLAGS_measure_memory);
caffe2::NetDef net_def;
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_net, &net_def));
setOperatorEngine(&net_def, FLAGS_backend);
if (!net_def.has_name()) {
net_def.set_name("benchmark");
}
caffe2::NetBase* net = workspace->CreateNet(net_def);
CHECK_NOTNULL(net);
runNetwork(
workspace,
net,
tensor_protos_map,
FLAGS_wipe_cache,
FLAGS_run_individual,
run_on_gpu,
FLAGS_text_output,
FLAGS_warmup,
FLAGS_iter,
num_blobs,
FLAGS_sleep_before_run,
FLAGS_sleep_between_iteration,
FLAGS_sleep_between_net_and_operator,
FLAGS_output,
FLAGS_output_folder);
predict_vmem = getVirtualMemoryIfOptionEnabled(
FLAGS_measure_memory) - predict_vmem;
if (FLAGS_measure_memory) {
logBenchmarkResult(
"NET_", "memory", "kB", (init_vmem + predict_vmem) / 1024);
}
return 0;
}