forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompare_models_torch.cc
300 lines (265 loc) · 9.4 KB
/
compare_models_torch.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iomanip>
#include <string>
#include <vector>
#include <ATen/ATen.h>
#include <caffe2/core/timer.h>
#include <caffe2/utils/string_utils.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/script.h>
#include <c10/mobile/CPUCachingAllocator.h>
C10_DEFINE_string(
refmodel,
"",
"The reference torch script model to compare against.");
C10_DEFINE_string(
model,
"",
"The torch script model to compare to the reference model.");
C10_DEFINE_string(
input_dims,
"",
"Alternate to input_files, if all inputs are simple "
"float TensorCPUs, specify the dimension using comma "
"separated numbers. If multiple input needed, use "
"semicolon to separate the dimension of different "
"tensors.");
C10_DEFINE_string(input_type, "", "Input type (uint8_t/float)");
C10_DEFINE_string(
input_memory_format,
"contiguous_format",
"Input memory format (contiguous_format/channels_last)");
C10_DEFINE_int(input_max, 1, "The maximum value inputs should have");
C10_DEFINE_int(input_min, -1, "The minimum value inputs should have");
C10_DEFINE_bool(
no_inputs,
false,
"Whether the model has any input. Will ignore other input arguments if true");
C10_DEFINE_bool(
use_caching_allocator,
false,
"Whether to cache allocations between inference iterations");
C10_DEFINE_bool(
print_output,
false,
"Whether to print output with all one input tensor.");
C10_DEFINE_int(iter, 10, "The number of iterations to run.");
C10_DEFINE_int(report_freq, 1000, "An update will be reported every n iterations");
C10_DEFINE_int(pytext_len, 0, "Length of input sequence.");
C10_DEFINE_string(
backend,
"cpu",
"what backend to use for model (vulkan, cpu, metal) (default=cpu)");
C10_DEFINE_string(
refbackend,
"cpu",
"what backend to use for model (vulkan, cpu, metal) (default=cpu)");
C10_DEFINE_string(tolerance, "1e-5", "tolerance to use for comparison");
C10_DEFINE_bool(
report_failures,
true,
"Whether to report error during failed iterations");
bool checkRtol(
const at::Tensor& diff,
const std::vector<at::Tensor>& inputs,
float tolerance,
bool report) {
float maxValue = 0.0f;
for (const auto& tensor : inputs) {
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
}
float threshold = tolerance * maxValue;
float maxDiff = diff.abs().max().item<float>();
bool passed = maxDiff < threshold;
if (!passed && report) {
std::cout << "Check FAILED! Max diff allowed: "
<< std::setw(10) << std::setprecision(5) << threshold
<< " max diff: "
<< std::setw(10) << std::setprecision(5) << maxDiff
<< std::endl;
}
return passed;
}
void report_pass_rate(int passed, int total) {
int pass_rate = static_cast<int>(static_cast<float>(passed) / static_cast<float>(total) * 100);
std::cout << "Output was equal within tolerance " << passed << "/"
<< total
<< " times. Pass rate: " << pass_rate
<< std::setprecision(2) << "%" << std::endl;
}
std::vector<std::string> split(
char separator,
const std::string& string,
bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<c10::IValue> create_inputs(
std::vector<c10::IValue>& refinputs,
std::vector<c10::IValue>& inputs,
std::string& refbackend,
std::string& backend,
const int range_min,
const int range_max) {
if (FLAGS_no_inputs) {
return {};
}
CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified.");
CAFFE_ENFORCE_GE(FLAGS_input_type.size(), 0, "Input type must be specified.");
std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims);
std::vector<std::string> input_type_list = split(';', FLAGS_input_type);
std::vector<std::string> input_memory_format_list =
split(';', FLAGS_input_memory_format);
CAFFE_ENFORCE_GE(
input_dims_list.size(), 0, "Input dims not specified correctly.");
CAFFE_ENFORCE_GE(
input_type_list.size(), 0, "Input type not specified correctly.");
CAFFE_ENFORCE_GE(
input_memory_format_list.size(),
0,
"Input format list not specified correctly.");
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_type_list.size(),
"Input dims and type should have the same number of items.");
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_memory_format_list.size(),
"Input dims and format should have the same number of items.");
for (size_t i = 0; i < input_dims_list.size(); ++i) {
auto input_dims_str = split(',', input_dims_list[i]);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
at::ScalarType input_type;
if (input_type_list[i] == "float") {
input_type = at::ScalarType::Float;
} else if (input_type_list[i] == "uint8_t") {
input_type = at::ScalarType::Byte;
} else if (input_type_list[i] == "int64") {
input_type = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
at::MemoryFormat input_memory_format;
if (input_memory_format_list[i] == "channels_last") {
if (input_dims.size() != 4u) {
CAFFE_THROW(
"channels_last memory format only available on 4D tensors!");
}
input_memory_format = at::MemoryFormat::ChannelsLast;
} else if (input_memory_format_list[i] == "contiguous_format") {
input_memory_format = at::MemoryFormat::Contiguous;
} else {
CAFFE_THROW(
"Unsupported input memory format: ", input_memory_format_list[i]);
}
const auto input_tensor = torch::rand(
input_dims,
at::TensorOptions(input_type).memory_format(input_memory_format))*(range_max - range_min) - range_min;
if (refbackend == "vulkan") {
refinputs.emplace_back(input_tensor.vulkan());
} else {
refinputs.emplace_back(input_tensor);
}
if (backend == "vulkan") {
inputs.emplace_back(input_tensor.vulkan());
} else {
inputs.emplace_back(input_tensor);
}
}
if (FLAGS_pytext_len > 0) {
auto stensor = FLAGS_pytext_len * at::ones({1}, torch::kI64);
if (refbackend == "vulkan") {
refinputs.emplace_back(stensor.vulkan());
} else {
refinputs.emplace_back(stensor);
}
if (backend == "vulkan") {
inputs.emplace_back(stensor.vulkan());
} else {
inputs.emplace_back(stensor);
}
}
return inputs;
}
int main(int argc, char** argv) {
c10::SetUsageMessage(
"Run accuracy comparison to a reference model for a pytorch model.\n"
"Example usage:\n"
"./compare_models_torch"
" --refmodel=<ref_model_file>"
" --model=<model_file>"
" --iter=20");
if (!c10::ParseCommandLineFlags(&argc, &argv)) {
std::cerr << "Failed to parse command line flags!" << std::endl;
return 1;
}
if (FLAGS_input_min >= FLAGS_input_max) {
std::cerr << "Input min: " << FLAGS_input_min
<< " should be less than input max: "
<< FLAGS_input_max << std::endl;
return 1;
}
std::stringstream ss(FLAGS_tolerance);
float tolerance = 0;
ss >> tolerance;
std::cout << "tolerance: " << tolerance << std::endl;
c10::InferenceMode mode;
torch::autograd::AutoGradMode guard(false);
torch::jit::GraphOptimizerEnabledGuard no_optimizer_guard(false);
auto module = torch::jit::load(FLAGS_model);
auto refmodule = torch::jit::load(FLAGS_refmodel);
module.eval();
refmodule.eval();
c10::CPUCachingAllocator caching_allocator;
c10::optional<c10::WithCPUCachingAllocatorGuard> caching_allocator_guard;
if (FLAGS_use_caching_allocator) {
caching_allocator_guard.emplace(&caching_allocator);
}
std::cout << "Running modules." << std::endl;
int passed = 0;
for (int i = 0; i < FLAGS_iter; ++i) {
std::vector<c10::IValue> refinputs;
std::vector<c10::IValue> inputs;
create_inputs(refinputs, inputs, FLAGS_refbackend, FLAGS_backend, FLAGS_input_min, FLAGS_input_max);
const auto refoutput = refmodule.forward(refinputs).toTensor().cpu();
const auto output = module.forward(inputs).toTensor().cpu();
bool check = checkRtol(refoutput-output, {refoutput, output}, tolerance, FLAGS_report_failures);
if (check) {
passed += 1;
if (FLAGS_report_failures && !check) {
std::cout << " (Iteration " << i << " failed)" << std::endl;
}
}
if (i > 0 && (i+1) % FLAGS_report_freq == 0) {
report_pass_rate(passed, i+1);
}
}
report_pass_rate(passed, FLAGS_iter);
return 0;
}