forked from dmlc/cxxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Inception-BN.conf
695 lines (668 loc) · 18.5 KB
/
Inception-BN.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# Batch Normalization
# Sergey Ioffe and Christian Szegedy
# http://arxiv.org/abs/1502.03167
#
# A pretrained model of this conf can be downloaded from http://goo.gl/EOskAl
# with the mean file from http://goo.gl/wOsuim
#
# Notes by Zhongwen Xu:
#
# Learning rates: descreased by 10x on round 20 and round 28.
#
# Performance of single center crop on three stages:
#
# On round 20, lr = 1e-2: val-rec@1:0.54192 val-rec@5:0.7912
# On round 28, lr = 1e-3: val-rec@1:0.67544 val-rec@5:0.8826
# On round 39, lr = 1e-4: val-rec@1:0.70454 val-rec@5:0.899
#
# The performance does not match the BN paper since we apply much less
# augmentation, we only apply random cropping 224x224 and flipping here.
# However, this model matches the performance of GoogLeNet (error rate
# 10.07% for top 5) from single crop.
#
data = train
iter = imgrec
# image_list = "imagenet/train.lst"
image_rec = "imagenet/train.bin"
image_mean = "models/mean_224.bin"
rand_crop=1
rand_mirror=1
shuffle=1
iter = threadbuffer
iter = end
eval = val
iter = imgrec
# image_list = "imagenet/val.lst"
image_rec = "imagenet/val.bin"
image_mean = "models/mean_224.bin"
#no random crop and mirror in test
iter = end
netconfig = start
layer[0->0.1] = conv:conv_1
kernel_size = 7
nchannel = 64
pad = 3
stride = 2
layer[0.1->0.2] = batch_norm:bn_1
layer[0.2->1] = relu:relu_1
layer[1->2] = max_pooling:max_pool_1
kernel_size = 3
stride = 2
layer[2->2.1] = conv:conv_2_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[2.1->2.2] = batch_norm:bn_2_1
layer[2.2->3] = relu:relu_2_1
layer[3->3.1] = conv:conv_2
kernel_size = 3
nchannel = 192
pad = 1
stride = 1
layer[3.1->3.2] = batch_norm:bn_2
layer[3.2->4] = relu:relu_2
layer[4->5] = max_pooling:max_pool_2
kernel_size = 3
stride = 2
##### inception 3a #####
layer[5->6.1.0,6.2.0,6.3.0,6.4.0] = split:split_3a_split
## inception 1x1
layer[6.1.0->6.1.1] = conv:conv_3a_1x1
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[6.1.1->6.1.2] = batch_norm:bn_3a_1x1
layer[6.1.2->6.1.3] = relu:relu_3a_1x1
## inception 3x3
layer[6.2.0->6.2.1] = conv:conv_3a_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[6.2.1->6.2.2] = batch_norm:bn_3a_3x3_reduce
layer[6.2.2->6.2.3] = relu:relu_3a_3x3_reduce
layer[6.2.3->6.2.4] = conv:conv_3a_3x3
kernel_size = 3
nchannel = 64
pad = 1
stride = 1
layer[6.2.4->6.2.5] = batch_norm:bn_3a_3x3
layer[6.2.5->6.2.6] = relu:relu_3a_3x3
## inception double 3x3
layer[6.3.0->6.3.1] = conv:conv_3a_double_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[6.3.1->6.3.2] = batch_norm:bn_3a_double_3x3_reduce
layer[6.3.2->6.3.3] = relu:relu_3a_double_3x3_reduce
layer[6.3.3->6.3.4] = conv:conv_3a_double_3x3_0
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[6.3.4->6.3.5] = batch_norm:bn_3a_double_3x3_0
layer[6.3.5->6.3.6] = relu:relu_3a_double_3x3_0
layer[6.3.6->6.3.7] = conv:conv_3a_double_3x3_1
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[6.3.7->6.3.8] = batch_norm:bn_3a_double_3x3_1
layer[6.3.8->6.3.9] = relu:relu_3a_double_3x3_1
## inception proj
layer[6.4.0->6.4.1] = avg_pooling:avg_pool_3a_pool
kernel_size = 3
stride = 1
pad = 1
layer[6.4.1->6.4.2] = conv:conv_3a_proj
kernel_size = 1
nchannel = 32
pad = 0
stride = 1
layer[6.4.2->6.4.3] = batch_norm:bn_3a_proj
layer[6.4.3->6.4.4] = relu:relu_3a_proj
layer[6.1.3,6.2.6,6.3.9,6.4.4->6] = ch_concat:ch_concat_3a_chconcat
##### inception 3b #####
layer[6->7.1.0,7.2.0,7.3.0,7.4.0] = split:split_3b_split
## inception 1x1
layer[7.1.0->7.1.1] = conv:conv_3b_1x1
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[7.1.1->7.1.2] = batch_norm:bn_3b_1x1
layer[7.1.2->7.1.3] = relu:relu_3b_1x1
## inception 3x3
layer[7.2.0->7.2.1] = conv:conv_3b_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[7.2.1->7.2.2] = batch_norm:bn_3b_3x3_reduce
layer[7.2.2->7.2.3] = relu:relu_3b_3x3_reduce
layer[7.2.3->7.2.4] = conv:conv_3b_3x3
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[7.2.4->7.2.5] = batch_norm:bn_3b_3x3
layer[7.2.5->7.2.6] = relu:relu_3b_3x3
## inception double 3x3
layer[7.3.0->7.3.1] = conv:conv_3b_double_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[7.3.1->7.3.2] = batch_norm:bn_3b_double_3x3_reduce
layer[7.3.2->7.3.3] = relu:relu_3b_double_3x3_reduce
layer[7.3.3->7.3.4] = conv:conv_3b_double_3x3_0
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[7.3.4->7.3.5] = batch_norm:bn_3b_double_3x3_0
layer[7.3.5->7.3.6] = relu:relu_3b_double_3x3_0
layer[7.3.6->7.3.7] = conv:conv_3b_double_3x3_1
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[7.3.7->7.3.8] = batch_norm:bn_3b_double_3x3_1
layer[7.3.8->7.3.9] = relu:relu_3b_double_3x3_1
## inception proj
layer[7.4.0->7.4.1] = avg_pooling:avg_pool_3b_pool
kernel_size = 3
stride = 1
pad = 1
layer[7.4.1->7.4.2] = conv:conv_3b_proj
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[7.4.2->7.4.3] = batch_norm:bn_3b_proj
layer[7.4.3->7.4.4] = relu:relu_3b_proj
layer[7.1.3,7.2.6,7.3.9,7.4.4->7] = ch_concat:ch_concat_3b_chconcat
##### inception 3c #####
layer[7->8.2.0,8.3.0,8.4.0] = split:split_3c_split
## inception 3x3
layer[8.2.0->8.2.1] = conv:conv_3c_3x3_reduce
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[8.2.1->8.2.2] = batch_norm:bn_3c_3x3_reduce
layer[8.2.2->8.2.3] = relu:relu_3c_3x3_reduce
layer[8.2.3->8.2.4] = conv:conv_3c_3x3
kernel_size = 3
nchannel = 160
pad = 1
stride = 2
layer[8.2.4->8.2.5] = batch_norm:bn_3c_3x3
layer[8.2.5->8.2.6] = relu:relu_3c_3x3
## inception double 3x3
layer[8.3.0->8.3.1] = conv:conv_3c_double_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[8.3.1->8.3.2] = batch_norm:bn_3c_double_3x3_reduce
layer[8.3.2->8.3.3] = relu:relu_3c_double_3x3_reduce
layer[8.3.3->8.3.4] = conv:conv_3c_double_3x3_0
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[8.3.4->8.3.5] = batch_norm:bn_3c_double_3x3_0
layer[8.3.5->8.3.6] = relu:relu_3c_double_3x3_0
layer[8.3.6->8.3.7] = conv:conv_3c_double_3x3_1
kernel_size = 3
nchannel = 96
pad = 1
stride = 2
layer[8.3.7->8.3.8] = batch_norm:bn_3c_double_3x3_1
layer[8.3.8->8.3.9] = relu:relu_3c_double_3x3_1
## inception proj
layer[8.4.0->8.4.1] = max_pooling:max_pool_3c_pool
kernel_size = 3
stride = 2
layer[8.2.6,8.3.9,8.4.1->8] = ch_concat:ch_concat_3c_chconcat
##### inception 4a #####
layer[8->9.1.0,9.2.0,9.3.0,9.4.0] = split:split_4a_split
## inception 1x1
layer[9.1.0->9.1.1] = conv:conv_4a_1x1
kernel_size = 1
nchannel = 224
pad = 0
stride = 1
layer[9.1.1->9.1.2] = batch_norm:bn_4a_1x1
layer[9.1.2->9.1.3] = relu:relu_4a_1x1
## inception 3x3
layer[9.2.0->9.2.1] = conv:conv_4a_3x3_reduce
kernel_size = 1
nchannel = 64
pad = 0
stride = 1
layer[9.2.1->9.2.2] = batch_norm:bn_4a_3x3_reduce
layer[9.2.2->9.2.3] = relu:relu_4a_3x3_reduce
layer[9.2.3->9.2.4] = conv:conv_4a_3x3
kernel_size = 3
nchannel = 96
pad = 1
stride = 1
layer[9.2.4->9.2.5] = batch_norm:bn_4a_3x3
layer[9.2.5->9.2.6] = relu:relu_4a_3x3
## inception double 3x3
layer[9.3.0->9.3.1] = conv:conv_4a_double_3x3_reduce
kernel_size = 1
nchannel = 96
pad = 0
stride = 1
layer[9.3.1->9.3.2] = batch_norm:bn_4a_double_3x3_reduce
layer[9.3.2->9.3.3] = relu:relu_4a_double_3x3_reduce
layer[9.3.3->9.3.4] = conv:conv_4a_double_3x3_0
kernel_size = 3
nchannel = 128
pad = 1
stride = 1
layer[9.3.4->9.3.5] = batch_norm:bn_4a_double_3x3_0
layer[9.3.5->9.3.6] = relu:relu_4a_double_3x3_0
layer[9.3.6->9.3.7] = conv:conv_4a_double_3x3_1
kernel_size = 3
nchannel = 128
pad = 1
stride = 1
layer[9.3.7->9.3.8] = batch_norm:bn_4a_double_3x3_1
layer[9.3.8->9.3.9] = relu:relu_4a_double_3x3_1
## inception proj
layer[9.4.0->9.4.1] = avg_pooling:avg_pool_4a_pool
kernel_size = 3
stride = 1
pad = 1
layer[9.4.1->9.4.2] = conv:conv_4a_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[9.4.2->9.4.3] = batch_norm:bn_4a_proj
layer[9.4.3->9.4.4] = relu:relu_4a_proj
layer[9.1.3,9.2.6,9.3.9,9.4.4->9] = ch_concat:ch_concat_4a_chconcat
##### inception 4b #####
layer[9->10.1.0,10.2.0,10.3.0,10.4.0] = split:split_4b_split
## inception 1x1
layer[10.1.0->10.1.1] = conv:conv_4b_1x1
kernel_size = 1
nchannel = 192
pad = 0
stride = 1
layer[10.1.1->10.1.2] = batch_norm:bn_4b_1x1
layer[10.1.2->10.1.3] = relu:relu_4b_1x1
## inception 3x3
layer[10.2.0->10.2.1] = conv:conv_4b_3x3_reduce
kernel_size = 1
nchannel = 96
pad = 0
stride = 1
layer[10.2.1->10.2.2] = batch_norm:bn_4b_3x3_reduce
layer[10.2.2->10.2.3] = relu:relu_4b_3x3_reduce
layer[10.2.3->10.2.4] = conv:conv_4b_3x3
kernel_size = 3
nchannel = 128
pad = 1
stride = 1
layer[10.2.4->10.2.5] = batch_norm:bn_4b_3x3
layer[10.2.5->10.2.6] = relu:relu_4b_3x3
## inception double 3x3
layer[10.3.0->10.3.1] = conv:conv_4b_double_3x3_reduce
kernel_size = 1
nchannel = 96
pad = 0
stride = 1
layer[10.3.1->10.3.2] = batch_norm:bn_4b_double_3x3_reduce
layer[10.3.2->10.3.3] = relu:relu_4b_double_3x3_reduce
layer[10.3.3->10.3.4] = conv:conv_4b_double_3x3_0
kernel_size = 3
nchannel = 128
pad = 1
stride = 1
layer[10.3.4->10.3.5] = batch_norm:bn_4b_double_3x3_0
layer[10.3.5->10.3.6] = relu:relu_4b_double_3x3_0
layer[10.3.6->10.3.7] = conv:conv_4b_double_3x3_1
kernel_size = 3
nchannel = 128
pad = 1
stride = 1
layer[10.3.7->10.3.8] = batch_norm:bn_4b_double_3x3_1
layer[10.3.8->10.3.9] = relu:relu_4b_double_3x3_1
## inception proj
layer[10.4.0->10.4.1] = avg_pooling:avg_pool_4b_pool
kernel_size = 3
stride = 1
pad = 1
layer[10.4.1->10.4.2] = conv:conv_4b_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[10.4.2->10.4.3] = batch_norm:bn_4b_proj
layer[10.4.3->10.4.4] = relu:relu_4b_proj
layer[10.1.3,10.2.6,10.3.9,10.4.4->10] = ch_concat:ch_concat_4b_chconcat
##### inception 4c #####
layer[10->11.1.0,11.2.0,11.3.0,11.4.0] = split:split_4c_split
## inception 1x1
layer[11.1.0->11.1.1] = conv:conv_4c_1x1
kernel_size = 1
nchannel = 160
pad = 0
stride = 1
layer[11.1.1->11.1.2] = batch_norm:bn_4c_1x1
layer[11.1.2->11.1.3] = relu:relu_4c_1x1
## inception 3x3
layer[11.2.0->11.2.1] = conv:conv_4c_3x3_reduce
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[11.2.1->11.2.2] = batch_norm:bn_4c_3x3_reduce
layer[11.2.2->11.2.3] = relu:relu_4c_3x3_reduce
layer[11.2.3->11.2.4] = conv:conv_4c_3x3
kernel_size = 3
nchannel = 160
pad = 1
stride = 1
layer[11.2.4->11.2.5] = batch_norm:bn_4c_3x3
layer[11.2.5->11.2.6] = relu:relu_4c_3x3
## inception double 3x3
layer[11.3.0->11.3.1] = conv:conv_4c_double_3x3_reduce
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[11.3.1->11.3.2] = batch_norm:bn_4c_double_3x3_reduce
layer[11.3.2->11.3.3] = relu:relu_4c_double_3x3_reduce
layer[11.3.3->11.3.4] = conv:conv_4c_double_3x3_0
kernel_size = 3
nchannel = 160
pad = 1
stride = 1
layer[11.3.4->11.3.5] = batch_norm:bn_4c_double_3x3_0
layer[11.3.5->11.3.6] = relu:relu_4c_double_3x3_0
layer[11.3.6->11.3.7] = conv:conv_4c_double_3x3_1
kernel_size = 3
nchannel = 160
pad = 1
stride = 1
layer[11.3.7->11.3.8] = batch_norm:bn_4c_double_3x3_1
layer[11.3.8->11.3.9] = relu:relu_4c_double_3x3_1
## inception proj
layer[11.4.0->11.4.1] = avg_pooling:avg_pool_4c_pool
kernel_size = 3
stride = 1
pad = 1
layer[11.4.1->11.4.2] = conv:conv_4c_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[11.4.2->11.4.3] = batch_norm:bn_4c_proj
layer[11.4.3->11.4.4] = relu:relu_4c_proj
layer[11.1.3,11.2.6,11.3.9,11.4.4->11] = ch_concat:ch_concat_4c_chconcat
##### inception 4d #####
layer[11->12.1.0,12.2.0,12.3.0,12.4.0] = split:split_4d_split
## inception 1x1
layer[12.1.0->12.1.1] = conv:conv_4d_1x1
kernel_size = 1
nchannel = 96
pad = 0
stride = 1
layer[12.1.1->12.1.2] = batch_norm:bn_4d_1x1
layer[12.1.2->12.1.3] = relu:relu_4d_1x1
## inception 3x3
layer[12.2.0->12.2.1] = conv:conv_4d_3x3_reduce
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[12.2.1->12.2.2] = batch_norm:bn_4d_3x3_reduce
layer[12.2.2->12.2.3] = relu:relu_4d_3x3_reduce
layer[12.2.3->12.2.4] = conv:conv_4d_3x3
kernel_size = 3
nchannel = 192
pad = 1
stride = 1
layer[12.2.4->12.2.5] = batch_norm:bn_4d_3x3
layer[12.2.5->12.2.6] = relu:relu_4d_3x3
## inception double 3x3
layer[12.3.0->12.3.1] = conv:conv_4d_double_3x3_reduce
kernel_size = 1
nchannel = 160
pad = 0
stride = 1
layer[12.3.1->12.3.2] = batch_norm:bn_4d_double_3x3_reduce
layer[12.3.2->12.3.3] = relu:relu_4d_double_3x3_reduce
layer[12.3.3->12.3.4] = conv:conv_4d_double_3x3_0
kernel_size = 3
nchannel = 192
pad = 1
stride = 1
layer[12.3.4->12.3.5] = batch_norm:bn_4d_double_3x3_0
layer[12.3.5->12.3.6] = relu:relu_4d_double_3x3_0
layer[12.3.6->12.3.7] = conv:conv_4d_double_3x3_1
kernel_size = 3
nchannel = 192
pad = 1
stride = 1
layer[12.3.7->12.3.8] = batch_norm:bn_4d_double_3x3_1
layer[12.3.8->12.3.9] = relu:relu_4d_double_3x3_1
## inception proj
layer[12.4.0->12.4.1] = avg_pooling:avg_pool_4d_pool
kernel_size = 3
stride = 1
pad = 1
layer[12.4.1->12.4.2] = conv:conv_4d_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[12.4.2->12.4.3] = batch_norm:bn_4d_proj
layer[12.4.3->12.4.4] = relu:relu_4d_proj
layer[12.1.3,12.2.6,12.3.9,12.4.4->12] = ch_concat:ch_concat_4d_chconcat
##### inception 4e #####
layer[12->13.2.0,13.3.0,13.4.0] = split:split_4e_split
## inception 3x3
layer[13.2.0->13.2.1] = conv:conv_4e_3x3_reduce
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[13.2.1->13.2.2] = batch_norm:bn_4e_3x3_reduce
layer[13.2.2->13.2.3] = relu:relu_4e_3x3_reduce
layer[13.2.3->13.2.4] = conv:conv_4e_3x3
kernel_size = 3
nchannel = 192
pad = 1
stride = 2
layer[13.2.4->13.2.5] = batch_norm:bn_4e_3x3
layer[13.2.5->13.2.6] = relu:relu_4e_3x3
## inception double 3x3
layer[13.3.0->13.3.1] = conv:conv_4e_double_3x3_reduce
kernel_size = 1
nchannel = 192
pad = 0
stride = 1
layer[13.3.1->13.3.2] = batch_norm:bn_4e_double_3x3_reduce
layer[13.3.2->13.3.3] = relu:relu_4e_double_3x3_reduce
layer[13.3.3->13.3.4] = conv:conv_4e_double_3x3_0
kernel_size = 3
nchannel = 256
pad = 1
stride = 1
layer[13.3.4->13.3.5] = batch_norm:bn_4e_double_3x3_0
layer[13.3.5->13.3.6] = relu:relu_4e_double_3x3_0
layer[13.3.6->13.3.7] = conv:conv_4e_double_3x3_1
kernel_size = 3
nchannel = 256
pad = 1
stride = 2
layer[13.3.7->13.3.8] = batch_norm:bn_4e_double_3x3_1
layer[13.3.8->13.3.9] = relu:relu_4e_double_3x3_1
## inception proj
layer[13.4.0->13.4.1] = max_pooling:max_pool_4e_pool
kernel_size = 3
stride = 2
layer[13.2.6,13.3.9,13.4.1->13] = ch_concat:ch_concat_4e_chconcat
##### inception 5a #####
layer[13->14.1.0,14.2.0,14.3.0,14.4.0] = split:split_5a_split
## inception 1x1
layer[14.1.0->14.1.1] = conv:conv_5a_1x1
kernel_size = 1
nchannel = 352
pad = 0
stride = 1
layer[14.1.1->14.1.2] = batch_norm:bn_5a_1x1
layer[14.1.2->14.1.3] = relu:relu_5a_1x1
## inception 3x3
layer[14.2.0->14.2.1] = conv:conv_5a_3x3_reduce
kernel_size = 1
nchannel = 192
pad = 0
stride = 1
layer[14.2.1->14.2.2] = batch_norm:bn_5a_3x3_reduce
layer[14.2.2->14.2.3] = relu:relu_5a_3x3_reduce
layer[14.2.3->14.2.4] = conv:conv_5a_3x3
kernel_size = 3
nchannel = 320
pad = 1
stride = 1
layer[14.2.4->14.2.5] = batch_norm:bn_5a_3x3
layer[14.2.5->14.2.6] = relu:relu_5a_3x3
## inception double 3x3
layer[14.3.0->14.3.1] = conv:conv_5a_double_3x3_reduce
kernel_size = 1
nchannel = 160
pad = 0
stride = 1
layer[14.3.1->14.3.2] = batch_norm:bn_5a_double_3x3_reduce
layer[14.3.2->14.3.3] = relu:relu_5a_double_3x3_reduce
layer[14.3.3->14.3.4] = conv:conv_5a_double_3x3_0
kernel_size = 3
nchannel = 224
pad = 1
stride = 1
layer[14.3.4->14.3.5] = batch_norm:bn_5a_double_3x3_0
layer[14.3.5->14.3.6] = relu:relu_5a_double_3x3_0
layer[14.3.6->14.3.7] = conv:conv_5a_double_3x3_1
kernel_size = 3
nchannel = 224
pad = 1
stride = 1
layer[14.3.7->14.3.8] = batch_norm:bn_5a_double_3x3_1
layer[14.3.8->14.3.9] = relu:relu_5a_double_3x3_1
## inception proj
layer[14.4.0->14.4.1] = avg_pooling:avg_pool_5a_pool
kernel_size = 3
stride = 1
pad = 1
layer[14.4.1->14.4.2] = conv:conv_5a_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[14.4.2->14.4.3] = batch_norm:bn_5a_proj
layer[14.4.3->14.4.4] = relu:relu_5a_proj
layer[14.1.3,14.2.6,14.3.9,14.4.4->14] = ch_concat:ch_concat_5a_chconcat
##### inception 5b #####
layer[14->15.1.0,15.2.0,15.3.0,15.4.0] = split:split_5b_split
## inception 1x1
layer[15.1.0->15.1.1] = conv:conv_5b_1x1
kernel_size = 1
nchannel = 352
pad = 0
stride = 1
layer[15.1.1->15.1.2] = batch_norm:bn_5b_1x1
layer[15.1.2->15.1.3] = relu:relu_5b_1x1
## inception 3x3
layer[15.2.0->15.2.1] = conv:conv_5b_3x3_reduce
kernel_size = 1
nchannel = 192
pad = 0
stride = 1
layer[15.2.1->15.2.2] = batch_norm:bn_5b_3x3_reduce
layer[15.2.2->15.2.3] = relu:relu_5b_3x3_reduce
layer[15.2.3->15.2.4] = conv:conv_5b_3x3
kernel_size = 3
nchannel = 320
pad = 1
stride = 1
layer[15.2.4->15.2.5] = batch_norm:bn_5b_3x3
layer[15.2.5->15.2.6] = relu:relu_5b_3x3
## inception double 3x3
layer[15.3.0->15.3.1] = conv:conv_5b_double_3x3_reduce
kernel_size = 1
nchannel = 192
pad = 0
stride = 1
layer[15.3.1->15.3.2] = batch_norm:bn_5b_double_3x3_reduce
layer[15.3.2->15.3.3] = relu:relu_5b_double_3x3_reduce
layer[15.3.3->15.3.4] = conv:conv_5b_double_3x3_0
kernel_size = 3
nchannel = 224
pad = 1
stride = 1
layer[15.3.4->15.3.5] = batch_norm:bn_5b_double_3x3_0
layer[15.3.5->15.3.6] = relu:relu_5b_double_3x3_0
layer[15.3.6->15.3.7] = conv:conv_5b_double_3x3_1
kernel_size = 3
nchannel = 224
pad = 1
stride = 1
layer[15.3.7->15.3.8] = batch_norm:bn_5b_double_3x3_1
layer[15.3.8->15.3.9] = relu:relu_5b_double_3x3_1
## inception proj
layer[15.4.0->15.4.1] = max_pooling:max_pool_5b_pool
kernel_size = 3
stride = 1
pad = 1
layer[15.4.1->15.4.2] = conv:conv_5b_proj
kernel_size = 1
nchannel = 128
pad = 0
stride = 1
layer[15.4.2->15.4.3] = batch_norm:bn_5b_proj
layer[15.4.3->15.4.4] = relu:relu_5b_proj
layer[15.1.3,15.2.6,15.3.9,15.4.4->15] = ch_concat:ch_concat_5b_chconcat
layer[15->16] = avg_pooling:global_pool
kernel_size = 7
stride = 1
layer[+1] = flatten:flatten
layer[+1] = fullc:fc
nhidden = 1000
layer[+0] = softmax:softmax
netconfig = end
# evaluation metric
metric = rec@1
metric = rec@5
max_round = 100
num_round = 100
# input shape not including batch
input_shape = 3,224,224
batch_size = 64
update_period = 2
# global parameters in any sectiion outside netconfig, and iter
momentum = 0.9
wmat:lr = 0.05
wmat:wd = 0.0001
bias:wd = 0.000
bias:lr = 0.1
# all the learning rate schedule starts with lr
lr:schedule = constant
save_model=1
model_dir=models
print_step=1
clip_gradient = 10
# random config
random_type = xavier
# new line
dev = gpu:0-3