Zhengxue Wang1, Zhiqiang Yan1, Ming-Hsuan Yang2, Jinshan Pan1, Guangwei Gao3, Ying Tai4, Jian Yang1
1Nanjing University of Science and Technology
2University of California at Merced
3Nanjing University of Posts and Telecommunications
4Nanjing University
[Paper] [Project Page]
SPFNet. It first produces the normal
Scheme of (a) All-in-one Prior Propagation (APP), and (b) histogram comparison of scene prior features before and after APP.
Scheme of (a) One-to-one Prior Embedding (OPE), and (b) gradient histogram of filter kernels in the texture area (green box).
Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0
All Datasets can be found here.
All pretrained models can be found here.
Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 42
# x8 DSR
> python train.py --scale 8 --num_feats 42
# x16 DSR
> python train.py --scale 16 --num_feats 42
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 20
Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 6 --tiny_model
# x8 DSR
> python train.py --scale 8 --num_feats 6 --tiny_model
# x16 DSR
> python train.py --scale 16 --num_feats 6 --tiny_model
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 6 --tiny_model
## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 42
### x8 DSR
> python test.py --scale 8 --num_feats 42
### x16 DSR
> python test.py --scale 16 --num_feats 42
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 20 --downsample real
## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 6 --tiny_model
### x8 DSR
> python test.py --scale 8 --num_feats 6 --tiny_model
### x16 DSR
> python test.py --scale 16 --num_feats 6 --tiny_model
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 6 --downsample real --tiny_model
Train & test on real-world RGB-D-D:
Train & test on synthetic NYU-v2 (x16):
We thank Xinni Jiang for her invaluable assistance.
We thank these repos sharing their codes: DKN and SUFT.
@article{wang2024scene,
title={Scene Prior Filtering for Depth Map Super-Resolution},
author={Wang, Zhengxue and Yan, Zhiqiang and Yang, Ming-Hsuan and Pan, Jinshan and Yang, Jian and Tai, Ying and Gao, Guangwei},
journal={arXiv preprint arXiv:2402.13876},
year={2024}
}