forked from facebook/rocksdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random.h
192 lines (153 loc) · 6.2 KB
/
random.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdint.h>
#include <algorithm>
#include <random>
#include "rocksdb/rocksdb_namespace.h"
namespace ROCKSDB_NAMESPACE {
// A very simple random number generator. Not especially good at
// generating truly random bits, but good enough for our needs in this
// package.
class Random {
private:
enum : uint32_t {
M = 2147483647L // 2^31-1
};
enum : uint64_t {
A = 16807 // bits 14, 8, 7, 5, 2, 1, 0
};
uint32_t seed_;
static uint32_t GoodSeed(uint32_t s) { return (s & M) != 0 ? (s & M) : 1; }
public:
// This is the largest value that can be returned from Next()
enum : uint32_t { kMaxNext = M };
explicit Random(uint32_t s) : seed_(GoodSeed(s)) {}
void Reset(uint32_t s) { seed_ = GoodSeed(s); }
uint32_t Next() {
// We are computing
// seed_ = (seed_ * A) % M, where M = 2^31-1
//
// seed_ must not be zero or M, or else all subsequent computed values
// will be zero or M respectively. For all other values, seed_ will end
// up cycling through every number in [1,M-1]
uint64_t product = seed_ * A;
// Compute (product % M) using the fact that ((x << 31) % M) == x.
seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
// The first reduction may overflow by 1 bit, so we may need to
// repeat. mod == M is not possible; using > allows the faster
// sign-bit-based test.
if (seed_ > M) {
seed_ -= M;
}
return seed_;
}
uint64_t Next64() { return (uint64_t{Next()} << 32) | Next(); }
// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint32_t Uniform(int n) { return Next() % n; }
// Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(int n) { return Uniform(n) == 0; }
// "Optional" one-in-n, where 0 or negative always returns false
// (may or may not consume a random value)
bool OneInOpt(int n) { return n > 0 && OneIn(n); }
// Returns random bool that is true for the given percentage of
// calls on average. Zero or less is always false and 100 or more
// is always true (may or may not consume a random value)
bool PercentTrue(int percentage) {
return static_cast<int>(Uniform(100)) < percentage;
}
// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint32_t Skewed(int max_log) {
return Uniform(1 << Uniform(max_log + 1));
}
// Returns a random string of length "len"
std::string RandomString(int len);
// Generates a random string of len bytes using human-readable characters
std::string HumanReadableString(int len);
// Generates a random binary data
std::string RandomBinaryString(int len);
// Returns a Random instance for use by the current thread without
// additional locking
static Random* GetTLSInstance();
};
// A good 32-bit random number generator based on std::mt19937.
// This exists in part to avoid compiler variance in warning about coercing
// uint_fast32_t from mt19937 to uint32_t.
class Random32 {
private:
std::mt19937 generator_;
public:
explicit Random32(uint32_t s) : generator_(s) {}
// Generates the next random number
uint32_t Next() { return static_cast<uint32_t>(generator_()); }
// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint32_t Uniform(uint32_t n) {
return static_cast<uint32_t>(
std::uniform_int_distribution<std::mt19937::result_type>(
0, n - 1)(generator_));
}
// Returns an *almost* uniformly distributed value in the range [0..n-1].
// Much faster than Uniform().
// REQUIRES: n > 0
uint32_t Uniformish(uint32_t n) {
// fastrange (without the header)
return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32);
}
// Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(uint32_t n) { return Uniform(n) == 0; }
// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint32_t Skewed(int max_log) {
return Uniform(uint32_t{1} << Uniform(max_log + 1));
}
// Reset the seed of the generator to the given value
void Seed(uint32_t new_seed) { generator_.seed(new_seed); }
};
// A good 64-bit random number generator based on std::mt19937_64
class Random64 {
private:
std::mt19937_64 generator_;
public:
explicit Random64(uint64_t s) : generator_(s) { }
// Generates the next random number
uint64_t Next() { return generator_(); }
// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint64_t Uniform(uint64_t n) {
return std::uniform_int_distribution<uint64_t>(0, n - 1)(generator_);
}
// Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(uint64_t n) { return Uniform(n) == 0; }
// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint64_t Skewed(int max_log) {
return Uniform(uint64_t(1) << Uniform(max_log + 1));
}
};
// A seeded replacement for removed std::random_shuffle
template <class RandomIt>
void RandomShuffle(RandomIt first, RandomIt last, uint32_t seed) {
std::mt19937 rng(seed);
std::shuffle(first, last, rng);
}
// A replacement for removed std::random_shuffle
template <class RandomIt>
void RandomShuffle(RandomIt first, RandomIt last) {
RandomShuffle(first, last, std::random_device{}());
}
} // namespace ROCKSDB_NAMESPACE