forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdmic_mcux.c
727 lines (649 loc) · 22.2 KB
/
dmic_mcux.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/*
* Copyright 2023 NXP
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* based on dmic_nrfx_pdm.c
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/dma.h>
#include <zephyr/audio/dmic.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/clock_control.h>
#include <soc.h>
#include <fsl_dmic.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dmic_mcux, CONFIG_AUDIO_DMIC_LOG_LEVEL);
#define DT_DRV_COMPAT nxp_dmic
struct mcux_dmic_pdm_chan {
dmic_channel_config_t dmic_channel_cfg;
const struct device *dma;
uint8_t dma_chan;
};
struct mcux_dmic_drv_data {
struct k_mem_slab *mem_slab;
void *dma_bufs[CONFIG_DMIC_MCUX_DMA_BUFFERS];
uint8_t active_buf_idx;
uint32_t block_size;
DMIC_Type *base_address;
struct mcux_dmic_pdm_chan **pdm_channels;
uint8_t act_num_chan;
struct k_msgq *rx_queue;
uint32_t chan_map_lo;
uint32_t chan_map_hi;
enum dmic_state dmic_state;
};
struct mcux_dmic_cfg {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
clock_control_subsys_t clock_name;
bool use2fs;
};
static int dmic_mcux_get_osr(uint32_t pcm_rate, uint32_t bit_clk, bool use_2fs)
{
uint32_t use2fs_div = use_2fs ? 1 : 2;
/* Note that the below calculation assumes the following:
* - DMIC DIVHFCLK is set to 0x0 (divide by 1)
* - DMIC PHY_HALF is set to 0x0 (standard sample rate)
*/
return (uint32_t)(bit_clk / (2 * pcm_rate * use2fs_div));
}
/* Gets hardware channel index from logical channel */
static uint8_t dmic_mcux_hw_chan(struct mcux_dmic_drv_data *drv_data,
uint8_t log_chan)
{
enum pdm_lr lr;
uint8_t hw_chan;
/* This function assigns hardware channel "n" to the left channel,
* and hardware channel "n+1" to the right channel. This choice is
* arbitrary, but must be followed throughout the driver.
*/
dmic_parse_channel_map(drv_data->chan_map_lo,
drv_data->chan_map_hi,
log_chan, &hw_chan, &lr);
if (lr == PDM_CHAN_LEFT) {
return hw_chan * 2;
} else {
return (hw_chan * 2) + 1;
}
}
static void dmic_mcux_activate_channels(struct mcux_dmic_drv_data *drv_data,
bool enable)
{
/* PDM channel 0 must always be enabled, as the RM states:
* "In order to output 8 channels of PDM Data, PDM_CLK01 must be used"
* therefore, even if we don't intend to capture PDM data from the
* channel 0 FIFO, we still enable the channel so the clock is active.
*/
uint32_t mask = 0x1;
for (uint8_t chan = 0; chan < drv_data->act_num_chan; chan++) {
/* Set bitmask of hw channel to enable */
mask |= BIT(dmic_mcux_hw_chan(drv_data, chan));
}
if (enable) {
DMIC_EnableChannnel(drv_data->base_address, mask);
} else {
/* No function to disable channels, we must bypass HAL here */
drv_data->base_address->CHANEN &= ~mask;
}
}
static int dmic_mcux_enable_dma(struct mcux_dmic_drv_data *drv_data, bool enable)
{
struct mcux_dmic_pdm_chan *pdm_channel;
uint8_t num_chan = drv_data->act_num_chan;
uint8_t hw_chan;
int ret = 0;
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
pdm_channel = drv_data->pdm_channels[hw_chan];
if (enable) {
ret = dma_start(pdm_channel->dma, pdm_channel->dma_chan);
if (ret < 0) {
LOG_ERR("Could not start DMA for HW channel %d",
hw_chan);
return ret;
}
} else {
if (dma_stop(pdm_channel->dma, pdm_channel->dma_chan)) {
ret = -EIO;
}
}
DMIC_EnableChannelDma(drv_data->base_address,
(dmic_channel_t)hw_chan, enable);
}
return ret;
}
/* Helper to reload DMA engine for all active channels with new buffer */
static void dmic_mcux_reload_dma(struct mcux_dmic_drv_data *drv_data,
void *buffer)
{
int ret;
uint8_t hw_chan;
struct mcux_dmic_pdm_chan *pdm_channel;
uint8_t num_chan = drv_data->act_num_chan;
uint32_t dma_buf_size = drv_data->block_size / num_chan;
uint32_t src, dst;
/* This function reloads the DMA engine for all active DMA channels
* with the provided buffer. Each DMA channel will start
* at a different initial address to interleave channel data.
*/
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
pdm_channel = drv_data->pdm_channels[hw_chan];
src = DMIC_FifoGetAddress(drv_data->base_address, hw_chan);
dst = (uint32_t)(((uint16_t *)buffer) + chan);
ret = dma_reload(pdm_channel->dma, pdm_channel->dma_chan,
src, dst, dma_buf_size);
if (ret < 0) {
LOG_ERR("Could not reload DMIC HW channel %d", hw_chan);
return;
}
}
}
/* Helper to get next buffer index for DMA */
static uint8_t dmic_mcux_next_buf_idx(uint8_t current_idx)
{
if ((current_idx + 1) == CONFIG_DMIC_MCUX_DMA_BUFFERS) {
return 0;
}
return current_idx + 1;
}
static int dmic_mcux_stop(struct mcux_dmic_drv_data *drv_data)
{
/* Disable active channels */
dmic_mcux_activate_channels(drv_data, false);
/* Disable DMA */
dmic_mcux_enable_dma(drv_data, false);
/* Free all memory slabs */
for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) {
k_mem_slab_free(drv_data->mem_slab, drv_data->dma_bufs[i]);
}
/* Purge the RX queue as well. */
k_msgq_purge(drv_data->rx_queue);
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
return 0;
}
static void dmic_mcux_dma_cb(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
struct mcux_dmic_drv_data *drv_data = (struct mcux_dmic_drv_data *)user_data;
int ret;
void *done_buffer = drv_data->dma_bufs[drv_data->active_buf_idx];
void *new_buffer;
LOG_DBG("CB: channel is %u", channel);
if (status < 0) {
/* DMA has failed, free allocated blocks */
LOG_ERR("DMA reports error");
dmic_mcux_enable_dma(drv_data, false);
dmic_mcux_activate_channels(drv_data, false);
/* Free all allocated DMA buffers */
dmic_mcux_stop(drv_data);
drv_data->dmic_state = DMIC_STATE_ERROR;
return;
}
/* Before we queue the current buffer, make sure we can allocate
* another one to replace it.
*/
ret = k_mem_slab_alloc(drv_data->mem_slab, &new_buffer, K_NO_WAIT);
if (ret < 0) {
/* We can't allocate a new buffer to replace the current
* one, so we cannot release the current buffer to the
* rx queue (or the DMA would stave). Therefore, we just
* leave the current buffer in place to be overwritten
* by the DMA.
*/
LOG_ERR("Could not allocate RX buffer. Dropping RX data");
drv_data->dmic_state = DMIC_STATE_ERROR;
/* Reload DMA */
dmic_mcux_reload_dma(drv_data, done_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx =
dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
return;
}
/* DMA issues an interrupt at the completion of every block.
* we should put the active buffer into the rx queue for the
* application to read. The application is responsible for
* freeing this buffer once it processes it.
*/
ret = k_msgq_put(drv_data->rx_queue, &done_buffer, K_NO_WAIT);
if (ret < 0) {
/* Free the newly allocated buffer, we won't need it. */
k_mem_slab_free(drv_data->mem_slab, new_buffer);
/* We cannot enqueue the current buffer, so we will drop
* the current buffer data and leave the current buffer
* in place to be overwritten by the DMA
*/
LOG_ERR("RX queue overflow, dropping RX buffer data");
drv_data->dmic_state = DMIC_STATE_ERROR;
/* Reload DMA */
dmic_mcux_reload_dma(drv_data, done_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx =
dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
return;
}
/* Previous buffer was enqueued, and new buffer is allocated.
* Replace pointer to previous buffer in our dma slots array,
* and reload DMA with next buffer.
*/
drv_data->dma_bufs[drv_data->active_buf_idx] = new_buffer;
dmic_mcux_reload_dma(drv_data, new_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx = dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
}
static int dmic_mcux_setup_dma(const struct device *dev)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
struct mcux_dmic_pdm_chan *pdm_channel;
struct dma_block_config blk_cfg[CONFIG_DMIC_MCUX_DMA_BUFFERS] = {0};
struct dma_config dma_cfg = {0};
uint8_t num_chan = drv_data->act_num_chan;
uint32_t dma_buf_size = drv_data->block_size / num_chan;
uint8_t dma_buf_idx = 0;
void *dma_buf = drv_data->dma_bufs[dma_buf_idx];
uint8_t hw_chan;
int ret = 0;
/* Setup DMA configuration common between all channels */
dma_cfg.user_data = drv_data;
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg.source_data_size = sizeof(uint16_t); /* Each sample is 16 bits */
dma_cfg.dest_data_size = sizeof(uint16_t);
dma_cfg.block_count = CONFIG_DMIC_MCUX_DMA_BUFFERS;
dma_cfg.head_block = &blk_cfg[0];
dma_cfg.complete_callback_en = 1; /* Callback at each block */
dma_cfg.dma_callback = dmic_mcux_dma_cb;
/* When multiple channels are enabled simultaneously, the DMA
* completion interrupt from one channel will signal that DMA data
* from multiple channels may be collected, provided the same
* amount of data was transferred. Therefore, we only enable the
* DMA completion callback for the first channel we setup
*/
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
/* Configure blocks for hw_chan */
for (uint32_t blk = 0; blk < CONFIG_DMIC_MCUX_DMA_BUFFERS; blk++) {
blk_cfg[blk].source_address =
DMIC_FifoGetAddress(drv_data->base_address, hw_chan);
/* We interleave samples within the output buffer
* based on channel map. So for a channel map like so:
* [pdm0_l, pdm0_r, pdm1_r, pdm1_l]
* the resulting DMA buffer would look like:
* [pdm0_l_s0, pdm0_r_s0, pdm1_r_s0, pdm1_l_s0,
* pdm0_l_s1, pdm0_r_s1, pdm1_r_s1, pdm1_l_s1, ...]
* Each sample is 16 bits wide.
*/
blk_cfg[blk].dest_address =
(uint32_t)(((uint16_t *)dma_buf) + chan);
blk_cfg[blk].dest_scatter_interval =
num_chan * sizeof(uint16_t);
blk_cfg[blk].dest_scatter_en = 1;
blk_cfg[blk].source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg[blk].dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
blk_cfg[blk].block_size = dma_buf_size;
/* Enable circular mode- when the final DMA block
* is exhausted, we want the DMA controller
* to restart with the first one.
*/
blk_cfg[blk].source_reload_en = 1;
blk_cfg[blk].dest_reload_en = 1;
if (blk < (CONFIG_DMIC_MCUX_DMA_BUFFERS - 1)) {
blk_cfg[blk].next_block = &blk_cfg[blk + 1];
} else {
/* Last block, enable circular reload */
blk_cfg[blk].next_block = NULL;
}
/* Select next dma buffer in array */
dma_buf_idx = dmic_mcux_next_buf_idx(dma_buf_idx);
dma_buf = drv_data->dma_bufs[dma_buf_idx];
}
pdm_channel = drv_data->pdm_channels[hw_chan];
/* Set configuration for hw_chan_0 */
ret = dma_config(pdm_channel->dma, pdm_channel->dma_chan, &dma_cfg);
if (ret < 0) {
LOG_ERR("Could not configure DMIC channel %d", hw_chan);
return ret;
}
/* First channel is configured. Do not install callbacks for
* other channels.
*/
dma_cfg.dma_callback = NULL;
}
return 0;
}
/* Initializes a DMIC hardware channel */
static int dmic_mcux_init_channel(const struct device *dev, uint32_t osr,
uint8_t chan, enum pdm_lr lr)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
if (!drv_data->pdm_channels[chan]) {
/* Channel disabled at devicetree level */
return -EINVAL;
}
drv_data->pdm_channels[chan]->dmic_channel_cfg.osr = osr;
/* Configure channel settings */
DMIC_ConfigChannel(drv_data->base_address, (dmic_channel_t)chan,
lr == PDM_CHAN_LEFT ? kDMIC_Left : kDMIC_Right,
&drv_data->pdm_channels[chan]->dmic_channel_cfg);
/* Setup channel FIFO. We use maximum threshold to avoid triggering
* DMA too frequently
*/
DMIC_FifoChannel(drv_data->base_address, chan, 15, true, true);
/* Disable interrupts. DMA will be enabled in dmic_mcux_trigger. */
DMIC_EnableChannelInterrupt(drv_data->base_address, chan, false);
return 0;
}
static int mcux_dmic_init(const struct device *dev)
{
const struct mcux_dmic_cfg *config = dev->config;
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
DMIC_Init(drv_data->base_address);
DMIC_Use2fs(drv_data->base_address, config->use2fs);
#if !(defined(FSL_FEATURE_DMIC_HAS_NO_IOCFG) && FSL_FEATURE_DMIC_HAS_NO_IOCFG)
/* Set IO to dual mode */
DMIC_SetIOCFG(drv_data->base_address, kDMIC_PdmDual);
#endif
drv_data->dmic_state = DMIC_STATE_INITIALIZED;
return 0;
}
static int dmic_mcux_configure(const struct device *dev,
struct dmic_cfg *config)
{
const struct mcux_dmic_cfg *drv_config = dev->config;
struct mcux_dmic_drv_data *drv_data = dev->data;
struct pdm_chan_cfg *channel = &config->channel;
struct pcm_stream_cfg *stream = &config->streams[0];
enum pdm_lr lr_0 = 0, lr_1 = 0;
uint8_t hw_chan_0 = 0, hw_chan_1 = 0;
uint32_t bit_clk_rate, osr;
int ret;
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
LOG_ERR("Cannot configure device while it is active");
return -EBUSY;
}
/* Only one active channel is supported */
if (channel->req_num_streams != 1) {
return -EINVAL;
}
/* DMIC supports up to 8 active channels. Verify user is not
* requesting more
*/
if (channel->req_num_chan > FSL_FEATURE_DMIC_CHANNEL_NUM) {
LOG_ERR("DMIC only supports 8 channels or less");
return -ENOTSUP;
}
if (stream->pcm_rate == 0 || stream->pcm_width == 0) {
if (drv_data->dmic_state == DMIC_STATE_CONFIGURED) {
DMIC_DeInit(drv_data->base_address);
drv_data->dmic_state = DMIC_STATE_UNINIT;
}
return 0;
}
/* If DMIC was deinitialized, reinit here */
if (drv_data->dmic_state == DMIC_STATE_UNINIT) {
ret = mcux_dmic_init(dev);
if (ret < 0) {
LOG_ERR("Could not reinit DMIC");
return ret;
}
}
/* Currently, we only support 16 bit samples. This is because the DMIC
* API dictates that samples should be interleaved between channels,
* IE: {C0, C1, C2, C0, C1, C2}. To achieve this we must use the
* "destination address increment" function of the LPC DMA IP. Since
* the LPC DMA IP does not support 3 byte wide transfers, we cannot
* effectively use destination address increments to interleave 24
* bit samples.
*/
if (stream->pcm_width != 16) {
LOG_ERR("Only 16 bit samples are supported");
return -ENOTSUP;
}
ret = clock_control_get_rate(drv_config->clock_dev,
drv_config->clock_name, &bit_clk_rate);
if (ret < 0) {
return ret;
}
/* Check bit clock rate versus what user requested */
if ((config->io.min_pdm_clk_freq > bit_clk_rate) ||
(config->io.max_pdm_clk_freq < bit_clk_rate)) {
return -EINVAL;
}
/* Calculate the required OSR divider based on the PCM bit clock
* rate to the DMIC.
*/
osr = dmic_mcux_get_osr(stream->pcm_rate, bit_clk_rate, drv_config->use2fs);
/* Now, parse the channel map and set up each channel we should
* make active. We parse two channels at once, that way we can
* check to make sure that the L/R channels of each PDM controller
* are adjacent.
*/
channel->act_num_chan = 0;
/* Save channel request data */
drv_data->chan_map_lo = channel->req_chan_map_lo;
drv_data->chan_map_hi = channel->req_chan_map_hi;
for (uint8_t chan = 0; chan < channel->req_num_chan; chan += 2) {
/* Get the channel map data for channel pair */
dmic_parse_channel_map(channel->req_chan_map_lo,
channel->req_chan_map_hi,
chan, &hw_chan_0, &lr_0);
if ((chan + 1) < channel->req_num_chan) {
/* Paired channel is enabled */
dmic_parse_channel_map(channel->req_chan_map_lo,
channel->req_chan_map_hi,
chan + 1, &hw_chan_1, &lr_1);
/* Verify that paired channels use same hardware index */
if ((lr_0 == lr_1) ||
(hw_chan_0 != hw_chan_1)) {
return -EINVAL;
}
}
/* Configure selected channels in DMIC */
ret = dmic_mcux_init_channel(dev, osr,
dmic_mcux_hw_chan(drv_data, chan),
lr_0);
if (ret < 0) {
return ret;
}
channel->act_num_chan++;
if ((chan + 1) < channel->req_num_chan) {
/* Paired channel is enabled */
ret = dmic_mcux_init_channel(dev, osr,
dmic_mcux_hw_chan(drv_data,
chan + 1),
lr_1);
if (ret < 0) {
return ret;
}
channel->act_num_chan++;
}
}
channel->act_chan_map_lo = channel->req_chan_map_lo;
channel->act_chan_map_hi = channel->req_chan_map_hi;
drv_data->mem_slab = stream->mem_slab;
drv_data->block_size = stream->block_size;
drv_data->act_num_chan = channel->act_num_chan;
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
return 0;
}
static int dmic_mcux_start(const struct device *dev)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
/* Allocate the initial set of buffers reserved for use by the hardware.
* We queue buffers so that when the DMA is operating on buffer "n",
* buffer "n+1" is already queued in the DMA hardware. When buffer "n"
* completes, we allocate another buffer and add it to the tail of the
* DMA descriptor chain. This approach requires the driver to allocate
* a minimum of two buffers
*/
for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) {
/* Allocate buffers for DMA */
ret = k_mem_slab_alloc(drv_data->mem_slab,
&drv_data->dma_bufs[i], K_NO_WAIT);
if (ret < 0) {
LOG_ERR("failed to allocate buffer");
return -ENOBUFS;
}
}
ret = dmic_mcux_setup_dma(dev);
if (ret < 0) {
return ret;
}
ret = dmic_mcux_enable_dma(drv_data, true);
if (ret < 0) {
return ret;
}
dmic_mcux_activate_channels(drv_data, true);
return 0;
}
static int dmic_mcux_trigger(const struct device *dev,
enum dmic_trigger cmd)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
switch (cmd) {
case DMIC_TRIGGER_PAUSE:
/* Disable active channels */
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
dmic_mcux_activate_channels(drv_data, false);
}
drv_data->dmic_state = DMIC_STATE_PAUSED;
break;
case DMIC_TRIGGER_STOP:
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
dmic_mcux_stop(drv_data);
}
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
break;
case DMIC_TRIGGER_RELEASE:
/* Enable active channels */
if (drv_data->dmic_state == DMIC_STATE_PAUSED) {
dmic_mcux_activate_channels(drv_data, true);
}
drv_data->dmic_state = DMIC_STATE_ACTIVE;
break;
case DMIC_TRIGGER_START:
if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) &&
(drv_data->dmic_state != DMIC_STATE_ACTIVE)) {
LOG_ERR("Device is not configured");
return -EIO;
} else if (drv_data->dmic_state != DMIC_STATE_ACTIVE) {
if (dmic_mcux_start(dev) < 0) {
LOG_ERR("Could not start DMIC");
return -EIO;
}
drv_data->dmic_state = DMIC_STATE_ACTIVE;
}
break;
case DMIC_TRIGGER_RESET:
/* Reset DMIC to uninitialized state */
DMIC_DeInit(drv_data->base_address);
drv_data->dmic_state = DMIC_STATE_UNINIT;
break;
default:
LOG_ERR("Invalid command: %d", cmd);
return -EINVAL;
}
return 0;
}
static int dmic_mcux_read(const struct device *dev,
uint8_t stream,
void **buffer, size_t *size, int32_t timeout)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
ARG_UNUSED(stream);
if (drv_data->dmic_state == DMIC_STATE_ERROR) {
LOG_ERR("Device reports an error, please reset and reconfigure it");
return -EIO;
}
if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) &&
(drv_data->dmic_state != DMIC_STATE_ACTIVE) &&
(drv_data->dmic_state != DMIC_STATE_PAUSED)) {
LOG_ERR("Device state is not valid for read");
return -EIO;
}
ret = k_msgq_get(drv_data->rx_queue, buffer, SYS_TIMEOUT_MS(timeout));
if (ret < 0) {
return ret;
}
*size = drv_data->block_size;
LOG_DBG("read buffer = %p", *buffer);
return 0;
}
static const struct _dmic_ops dmic_ops = {
.configure = dmic_mcux_configure,
.trigger = dmic_mcux_trigger,
.read = dmic_mcux_read,
};
/* Converts integer gainshift into 5 bit 2's complement value for GAINSHIFT reg */
#define PDM_DMIC_GAINSHIFT(val) \
(val >= 0) ? (val & 0xF) : (BIT(4) | (0x10 - (val & 0xF)))
/* Defines structure for a given PDM channel node */
#define PDM_DMIC_CHAN_DEFINE(pdm_node) \
static struct mcux_dmic_pdm_chan \
pdm_channel_##pdm_node = { \
.dma = DEVICE_DT_GET(DT_DMAS_CTLR(pdm_node)), \
.dma_chan = DT_DMAS_CELL_BY_IDX(pdm_node, 0, channel), \
.dmic_channel_cfg = { \
.gainshft = PDM_DMIC_GAINSHIFT(DT_PROP(pdm_node, \
gainshift)), \
.preac2coef = DT_ENUM_IDX(pdm_node, compensation_2fs), \
.preac4coef = DT_ENUM_IDX(pdm_node, compensation_4fs), \
.dc_cut_level = DT_ENUM_IDX(pdm_node, dc_cutoff), \
.post_dc_gain_reduce = DT_PROP(pdm_node, dc_gain), \
.sample_rate = kDMIC_PhyFullSpeed, \
.saturate16bit = 1U, \
}, \
};
/* Defines structures for all enabled PDM channels */
#define PDM_DMIC_CHANNELS_DEFINE(idx) \
DT_INST_FOREACH_CHILD_STATUS_OKAY(idx, PDM_DMIC_CHAN_DEFINE)
/* Gets pointer for a given PDM channel node */
#define PDM_DMIC_CHAN_GET(pdm_node) \
COND_CODE_1(DT_NODE_HAS_STATUS_OKAY(pdm_node), \
(&pdm_channel_##pdm_node), (NULL)),
/* Gets array of pointers to PDM channels */
#define PDM_DMIC_CHANNELS_GET(idx) \
DT_INST_FOREACH_CHILD(idx, PDM_DMIC_CHAN_GET)
#define MCUX_DMIC_DEVICE(idx) \
PDM_DMIC_CHANNELS_DEFINE(idx); \
static struct mcux_dmic_pdm_chan \
*pdm_channels##idx[FSL_FEATURE_DMIC_CHANNEL_NUM] = { \
PDM_DMIC_CHANNELS_GET(idx) \
}; \
K_MSGQ_DEFINE(dmic_msgq##idx, sizeof(void *), \
CONFIG_DMIC_MCUX_QUEUE_SIZE, 1); \
static struct mcux_dmic_drv_data mcux_dmic_data##idx = { \
.pdm_channels = pdm_channels##idx, \
.base_address = (DMIC_Type *) DT_INST_REG_ADDR(idx), \
.dmic_state = DMIC_STATE_UNINIT, \
.rx_queue = &dmic_msgq##idx, \
.active_buf_idx = 0U, \
}; \
\
PINCTRL_DT_INST_DEFINE(idx); \
static struct mcux_dmic_cfg mcux_dmic_cfg##idx = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_name = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(idx, name), \
.use2fs = DT_INST_PROP(idx, use2fs), \
}; \
\
DEVICE_DT_INST_DEFINE(idx, mcux_dmic_init, NULL, \
&mcux_dmic_data##idx, &mcux_dmic_cfg##idx, \
POST_KERNEL, CONFIG_AUDIO_DMIC_INIT_PRIORITY, \
&dmic_ops);
/* Existing SoCs only have one PDM instance. */
DT_INST_FOREACH_STATUS_OKAY(MCUX_DMIC_DEVICE)