forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdma_iproc_pax_v1.c
991 lines (835 loc) · 27 KB
/
dma_iproc_pax_v1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/*
* Copyright 2020 Broadcom
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT brcm_iproc_pax_dma_v1
#include <zephyr/arch/cpu.h>
#include <zephyr/cache.h>
#include <errno.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/linker/sections.h>
#include <soc.h>
#include <string.h>
#include <zephyr/toolchain.h>
#include <zephyr/types.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/pcie/endpoint/pcie_ep.h>
#include "dma_iproc_pax_v1.h"
#define LOG_LEVEL CONFIG_DMA_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dma_iproc_pax);
/* Driver runtime data for PAX DMA and RM */
static struct dma_iproc_pax_data pax_dma_data;
static inline uint32_t reset_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
return ring->pkt_id = 0x0;
}
/**
* @brief Opaque/packet id allocator, range 0 to 31
*/
static inline uint32_t alloc_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
ring->pkt_id = (ring->pkt_id + 1) % 32;
return ring->pkt_id;
}
static inline uint32_t curr_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
return ring->pkt_id;
}
static inline uint32_t curr_toggle_val(struct dma_iproc_pax_ring_data *ring)
{
return ring->curr.toggle;
}
/**
* @brief Populate header descriptor
*/
static inline void rm_write_header_desc(void *desc, uint32_t toggle,
uint32_t opq, uint32_t bdcount)
{
struct rm_header *r = (struct rm_header *)desc;
r->opq = opq;
/* DMA descriptor count init value */
r->bdcount = bdcount;
r->prot = 0x0;
/* No packet extension, start and end set to '1' */
r->start = 1;
r->end = 1;
r->toggle = toggle;
/* RM header type */
r->type = PAX_DMA_TYPE_RM_HEADER;
}
/**
* @brief Fill RM header descriptor for next transfer
* with invalid toggle
*/
static inline void rm_write_header_next_desc(void *desc,
struct dma_iproc_pax_ring_data *r,
uint32_t opq, uint32_t bdcount)
{
/* Toggle bit is invalid until next payload configured */
rm_write_header_desc(desc, (r->curr.toggle == 0) ? 1 : 0, opq, bdcount);
}
static inline void rm_header_set_bd_count(void *desc, uint32_t bdcount)
{
struct rm_header *r = (struct rm_header *)desc;
/* DMA descriptor count */
r->bdcount = bdcount;
}
static inline void rm_header_set_toggle(void *desc, uint32_t toggle)
{
struct rm_header *r = (struct rm_header *)desc;
r->toggle = toggle;
}
/**
* @brief Populate dma header descriptor
*/
static inline void rm_write_dma_header_desc(void *desc,
struct dma_iproc_pax_payload *pl)
{
struct dma_header_desc *hdr = (struct dma_header_desc *)desc;
hdr->length = pl->xfer_sz;
hdr->opcode = pl->direction;
/* DMA header type */
hdr->type = PAX_DMA_TYPE_DMA_DESC;
}
/**
* @brief Populate axi address descriptor
*/
static inline void rm_write_axi_addr_desc(void *desc,
struct dma_iproc_pax_payload *pl)
{
struct axi_addr_desc *axi = (struct axi_addr_desc *)desc;
axi->axi_addr = pl->axi_addr;
axi->type = PAX_DMA_TYPE_DMA_DESC;
}
/**
* @brief Populate pci address descriptor
*/
static inline void rm_write_pci_addr_desc(void *desc,
struct dma_iproc_pax_payload *pl)
{
struct pci_addr_desc *pci = (struct pci_addr_desc *)desc;
pci->pcie_addr = pl->pci_addr >> PAX_DMA_PCI_ADDR_ALIGNMT_SHIFT;
pci->type = PAX_DMA_TYPE_DMA_DESC;
}
/**
* @brief Return's pointer to the descriptor memory to be written next,
* skip next pointer descriptor address.
*/
static void *next_desc_addr(struct dma_iproc_pax_ring_data *ring)
{
struct next_ptr_desc *nxt;
uintptr_t curr;
curr = (uintptr_t)ring->curr.write_ptr + PAX_DMA_RM_DESC_BDWIDTH;
/* if hit next table ptr, skip to next location, flip toggle */
nxt = (struct next_ptr_desc *)curr;
if (nxt->type == PAX_DMA_TYPE_NEXT_PTR) {
LOG_DBG("hit next_ptr@0x%lx:T%d, next_table@0x%lx\n",
curr, nxt->toggle, (uintptr_t)nxt->addr);
uintptr_t last = (uintptr_t)ring->bd +
PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
ring->curr.toggle = (ring->curr.toggle == 0) ? 1 : 0;
/* move to next addr, wrap around if hits end */
curr += PAX_DMA_RM_DESC_BDWIDTH;
if (curr == last) {
curr = (uintptr_t)ring->bd;
LOG_DBG("hit end of desc:0x%lx, wrap to 0x%lx\n",
last, curr);
}
}
ring->curr.write_ptr = (void *)curr;
return (void *)curr;
}
/**
* @brief Populate next ptr descriptor
*/
static void rm_write_next_table_desc(void *desc, void *next_ptr,
uint32_t toggle)
{
struct next_ptr_desc *nxt = (struct next_ptr_desc *)desc;
nxt->addr = (uintptr_t)next_ptr;
nxt->type = PAX_DMA_TYPE_NEXT_PTR;
nxt->toggle = toggle;
}
static void prepare_ring(struct dma_iproc_pax_ring_data *ring)
{
uintptr_t curr, next, last;
uint32_t toggle;
int buff_count = PAX_DMA_NUM_BD_BUFFS;
/* zero out descriptor area */
memset(ring->bd, 0x0, PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS);
memset(ring->cmpl, 0x0, PAX_DMA_RM_CMPL_RING_SIZE);
/* opaque/packet id value */
rm_write_header_desc(ring->bd, 0x0, reset_pkt_id(ring),
PAX_DMA_RM_DESC_BDCOUNT);
/* start with first buffer, valid toggle is 0x1 */
toggle = 0x1;
curr = (uintptr_t)ring->bd;
next = curr + PAX_DMA_RM_DESC_RING_SIZE;
last = curr + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
do {
/* Place next_table desc as last BD entry on each buffer */
rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr),
(void *)next, toggle);
/* valid toggle flips for each buffer */
toggle = toggle ? 0x0 : 0x1;
curr += PAX_DMA_RM_DESC_RING_SIZE;
next += PAX_DMA_RM_DESC_RING_SIZE;
/* last entry, chain back to first buffer */
if (next == last) {
next = (uintptr_t)ring->bd;
}
} while (--buff_count);
dma_mb();
/* start programming from first RM header */
ring->curr.write_ptr = ring->bd;
/* valid toggle starts with 1 after reset */
ring->curr.toggle = 1;
/* completion read offset */
ring->curr.cmpl_rd_offs = 0;
/* init sync data for the ring */
ring->curr.sync_data.signature = PAX_DMA_WRITE_SYNC_SIGNATURE;
ring->curr.sync_data.ring = ring->idx;
/* pkt id for active dma xfer */
ring->curr.sync_data.opaque = 0x0;
/* pkt count for active dma xfer */
ring->curr.sync_data.total_pkts = 0x0;
}
static int init_rm(struct dma_iproc_pax_data *pd)
{
int ret = -ETIMEDOUT, timeout = 1000;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* Wait for Ring Manager ready */
do {
LOG_DBG("Waiting for RM HW init\n");
if ((sys_read32(RM_COMM_REG(pd, RM_COMM_MAIN_HW_INIT_DONE)) &
RM_COMM_MAIN_HW_INIT_DONE_MASK)) {
ret = 0;
break;
}
k_sleep(K_MSEC(1));
} while (--timeout);
k_mutex_unlock(&pd->dma_lock);
if (!timeout) {
LOG_WRN("RM HW Init timedout!\n");
} else {
LOG_INF("PAX DMA RM HW Init Done\n");
}
return ret;
}
static void rm_cfg_start(struct dma_iproc_pax_data *pd)
{
uint32_t val;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* set config done 0, enable toggle mode */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val &= ~RM_COMM_CONTROL_CONFIG_DONE;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
val &= ~(RM_COMM_CONTROL_MODE_MASK << RM_COMM_CONTROL_MODE_SHIFT);
val |= (RM_COMM_CONTROL_MODE_TOGGLE << RM_COMM_CONTROL_MODE_SHIFT);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* Disable MSI */
sys_write32(RM_COMM_MSI_DISABLE_VAL,
RM_COMM_REG(pd, RM_COMM_MSI_DISABLE));
/* Enable Line interrupt */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_LINE_INTR_EN;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* Enable AE_TIMEOUT */
sys_write32(RM_COMM_AE_TIMEOUT_VAL, RM_COMM_REG(pd,
RM_COMM_AE_TIMEOUT));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_AE_TIMEOUT_EN;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* AE (Acceleration Engine) grouping to group '0' */
val = sys_read32(RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
val &= ~RM_AE_CTRL_AE_GROUP_MASK;
sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
val |= RM_AE_CONTROL_ACTIVE;
sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
/* AXI read/write channel enable */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
val |= (RM_COMM_AXI_CONTROL_RD_CH_EN | RM_COMM_AXI_CONTROL_WR_CH_EN);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
/* Tune RM control programming for 4 rings */
sys_write32(RM_COMM_TIMER_CONTROL0_VAL,
RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_0));
sys_write32(RM_COMM_TIMER_CONTROL1_VAL,
RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_1));
sys_write32(RM_COMM_RM_BURST_LENGTH,
RM_COMM_REG(pd, RM_COMM_RM_BURST_LENGTH));
/* Set Sequence max count to the max supported value */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
val = (val | RING_MASK_SEQ_MAX_COUNT_MASK);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
k_mutex_unlock(&pd->dma_lock);
}
static void rm_ring_clear_stats(struct dma_iproc_pax_data *pd,
enum ring_idx idx)
{
/* Read ring Tx, Rx, and Outstanding counts to clear */
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_LS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_MS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_LS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_MS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND));
}
static void rm_cfg_finish(struct dma_iproc_pax_data *pd)
{
uint32_t val;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* set Ring config done */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_CONFIG_DONE;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
k_mutex_unlock(&pd->dma_lock);
}
/* Activate/Deactivate rings */
static inline void set_ring_active(struct dma_iproc_pax_data *pd,
enum ring_idx idx,
bool active)
{
uint32_t val;
val = sys_read32(RM_RING_REG(pd, idx, RING_CONTROL));
if (active) {
val |= RING_CONTROL_ACTIVE;
} else {
val &= ~RING_CONTROL_ACTIVE;
}
sys_write32(val, RM_RING_REG(pd, idx, RING_CONTROL));
}
static int init_ring(struct dma_iproc_pax_data *pd, enum ring_idx idx)
{
uint32_t val;
uintptr_t desc = (uintptr_t)pd->ring[idx].bd;
uintptr_t cmpl = (uintptr_t)pd->ring[idx].cmpl;
int timeout = 5000, ret = 0;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* Read cmpl write ptr incase previous dma stopped */
sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR));
/* Inactivate ring */
sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
/* Flush ring before loading new descriptor */
sys_write32(RING_CONTROL_FLUSH, RM_RING_REG(pd, idx, RING_CONTROL));
do {
if (sys_read32(RM_RING_REG(pd, idx, RING_FLUSH_DONE)) &
RING_FLUSH_DONE_MASK) {
break;
}
k_busy_wait(1);
} while (--timeout);
if (!timeout) {
LOG_WRN("Ring %d flush timedout!\n", idx);
ret = -ETIMEDOUT;
goto err;
}
/* clear ring after flush */
sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
/* ring group id set to '0' */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
val &= ~RING_COMM_CTRL_AE_GROUP_MASK;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
/* DDR update control, set timeout value */
val = RING_DDR_CONTROL_COUNT(RING_DDR_CONTROL_COUNT_VAL) |
RING_DDR_CONTROL_TIMER(RING_DDR_CONTROL_TIMER_VAL) |
RING_DDR_CONTROL_ENABLE;
sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL));
val = (uint32_t)((uintptr_t)desc >> PAX_DMA_RING_BD_ALIGN_ORDER);
sys_write32(val, RM_RING_REG(pd, idx, RING_BD_START_ADDR));
val = (uint32_t)((uintptr_t)cmpl >> PAX_DMA_RING_CMPL_ALIGN_ORDER);
sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_START_ADDR));
val = sys_read32(RM_RING_REG(pd, idx, RING_BD_READ_PTR));
/* keep ring inactive after init to avoid BD poll */
set_ring_active(pd, idx, false);
rm_ring_clear_stats(pd, idx);
err:
k_mutex_unlock(&pd->dma_lock);
return ret;
}
static int poll_on_write_sync(const struct device *dev,
struct dma_iproc_pax_ring_data *ring)
{
const struct dma_iproc_pax_cfg *cfg = dev->config;
struct dma_iproc_pax_write_sync_data sync_rd, *recv, *sent;
uint64_t pci_addr;
uint32_t *pci32, *axi32;
uint32_t zero_init = 0, timeout = PAX_DMA_MAX_SYNC_WAIT;
int ret;
recv = &sync_rd;
sent = &(ring->curr.sync_data);
/* form host pci sync address */
pci32 = (uint32_t *)&pci_addr;
pci32[0] = ring->sync_pci.addr_lo;
pci32[1] = ring->sync_pci.addr_hi;
axi32 = (uint32_t *)&sync_rd;
do {
ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr,
(uintptr_t *)axi32, 4,
PCIE_OB_LOWMEM, HOST_TO_DEVICE);
if (memcmp((void *)recv, (void *)sent, 4) == 0) {
/* clear the sync word */
ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr,
(uintptr_t *)&zero_init,
4, PCIE_OB_LOWMEM,
DEVICE_TO_HOST);
dma_mb();
ret = 0;
break;
}
k_busy_wait(1);
} while (--timeout);
if (!timeout) {
LOG_DBG("[ring %d]: not recvd write sync!\n", ring->idx);
ret = -ETIMEDOUT;
}
return ret;
}
static int process_cmpl_event(const struct device *dev,
enum ring_idx idx, uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = dev->data;
uint32_t wr_offs, rd_offs, ret = DMA_STATUS_COMPLETE;
struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
struct cmpl_pkt *c;
uint32_t is_outstanding;
/* cmpl read offset, unprocessed cmpl location */
rd_offs = ring->curr.cmpl_rd_offs;
wr_offs = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WRITE_PTR));
/* Update read ptr to "processed" */
ring->curr.cmpl_rd_offs = wr_offs;
/*
* Ensure consistency of completion descriptor
* The completion desc is updated by RM via AXI stream
* CPU need to ensure the memory operations are completed
* before reading cmpl area, by a "dsb"
* If Dcache enabled, need to invalidate the cachelines to
* read updated cmpl desc. The cache API also issues dsb.
*/
dma_mb();
/* Decode cmpl pkt id to verify */
c = (struct cmpl_pkt *)((uintptr_t)ring->cmpl +
PAX_DMA_CMPL_DESC_SIZE * PAX_DMA_CURR_CMPL_IDX(wr_offs));
LOG_DBG("RING%d WR_PTR:%d opq:%d, rm_status:%x dma_status:%x\n",
idx, wr_offs, c->opq, c->rm_status, c->dma_status);
is_outstanding = sys_read32(RM_RING_REG(pd, idx,
RING_NUM_REQ_OUTSTAND));
if ((ring->curr.opq != c->opq) && (is_outstanding != 0)) {
LOG_ERR("RING%d: pkt id should be %d, rcvd %d outst=%d\n",
idx, ring->curr.opq, c->opq, is_outstanding);
ret = -EIO;
}
/* check for completion AE timeout */
if (c->rm_status == RM_COMPLETION_AE_TIMEOUT) {
LOG_ERR("RING%d WR_PTR:%d rm_status:%x AE Timeout!\n",
idx, wr_offs, c->rm_status);
/* TBD: Issue full card reset to restore operations */
LOG_ERR("Needs Card Reset to recover!\n");
ret = -ETIMEDOUT;
}
if (ring->dma_callback) {
ring->dma_callback(dev, ring->callback_arg, idx, ret);
}
return ret;
}
#ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
static int peek_ring_cmpl(const struct device *dev,
enum ring_idx idx, uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = dev->data;
uint32_t wr_offs, rd_offs, timeout = PAX_DMA_MAX_POLL_WAIT;
struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
/* cmpl read offset, unprocessed cmpl location */
rd_offs = ring->curr.cmpl_rd_offs;
/* poll write_ptr until cmpl received for all buffers */
do {
wr_offs = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WRITE_PTR));
if (PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs) >= pl_len) {
break;
}
k_busy_wait(1);
} while (--timeout);
if (timeout == 0) {
LOG_ERR("RING%d timeout, rcvd %d, expected %d!\n",
idx, PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs), pl_len);
/* More debug info on current dma instance */
LOG_ERR("WR_PTR:%x RD_PTR%x\n", wr_offs, rd_offs);
return -ETIMEDOUT;
}
return process_cmpl_event(dev, idx, pl_len);
}
#else
static void rm_isr(const struct device *dev)
{
uint32_t status, err_stat, idx;
struct dma_iproc_pax_data *pd = dev->data;
/* read and clear interrupt status */
status = sys_read32(RM_COMM_REG(pd, RM_COMM_MSI_INTR_INTERRUPT_STATUS));
sys_write32(status, RM_COMM_REG(pd,
RM_COMM_MSI_INTERRUPT_STATUS_CLEAR));
/* read and clear DME/AE error interrupts */
err_stat = sys_read32(RM_COMM_REG(pd,
RM_COMM_DME_INTERRUPT_STATUS_MASK));
sys_write32(err_stat,
RM_COMM_REG(pd, RM_COMM_DME_INTERRUPT_STATUS_CLEAR));
err_stat =
sys_read32(RM_COMM_REG(pd,
RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_MASK));
sys_write32(err_stat,
RM_COMM_REG(pd,
RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_CLEAR));
/* alert waiting thread to process, for each completed ring */
for (idx = PAX_DMA_RING0; idx < PAX_DMA_RINGS_MAX; idx++) {
if (status & (0x1 << idx)) {
k_sem_give(&pd->ring[idx].alert);
}
}
}
#endif
static int dma_iproc_pax_init(const struct device *dev)
{
const struct dma_iproc_pax_cfg *cfg = dev->config;
struct dma_iproc_pax_data *pd = dev->data;
int r;
uintptr_t mem_aligned;
if (!device_is_ready(cfg->pcie_dev)) {
LOG_ERR("PCIe device not ready");
return -ENODEV;
}
pd->dma_base = cfg->dma_base;
pd->rm_comm_base = cfg->rm_comm_base;
pd->used_rings = (cfg->use_rings < PAX_DMA_RINGS_MAX) ?
cfg->use_rings : PAX_DMA_RINGS_MAX;
LOG_DBG("dma base:0x%x, rm comm base:0x%x, needed rings %d\n",
pd->dma_base, pd->rm_comm_base, pd->used_rings);
/* dma/rm access lock */
k_mutex_init(&pd->dma_lock);
/* Ring Manager H/W init */
if (init_rm(pd)) {
return -ETIMEDOUT;
}
/* common rm config */
rm_cfg_start(pd);
/* individual ring config */
for (r = 0; r < pd->used_rings; r++) {
/* per-ring mutex lock */
k_mutex_init(&pd->ring[r].lock);
/* Init alerts */
k_sem_init(&pd->ring[r].alert, 0, 1);
pd->ring[r].idx = r;
pd->ring[r].ring_base = cfg->rm_base +
PAX_DMA_RING_ADDR_OFFSET(r);
LOG_DBG("RING%d,VERSION:0x%x\n", pd->ring[r].idx,
sys_read32(RM_RING_REG(pd, r, RING_VER)));
/* Allocate for 2 BD buffers + cmpl buffer + payload struct */
pd->ring[r].ring_mem = (void *)((uintptr_t)cfg->bd_memory_base +
r *
PAX_DMA_PER_RING_ALLOC_SIZE);
if (!pd->ring[r].ring_mem) {
LOG_ERR("RING%d failed to alloc desc memory!\n", r);
return -ENOMEM;
}
/* Find 8K aligned address within allocated region */
mem_aligned = ((uintptr_t)pd->ring[r].ring_mem +
PAX_DMA_RING_ALIGN - 1) &
~(PAX_DMA_RING_ALIGN - 1);
pd->ring[r].cmpl = (void *)mem_aligned;
pd->ring[r].bd = (void *)(mem_aligned +
PAX_DMA_RM_CMPL_RING_SIZE);
pd->ring[r].payload = (void *)((uintptr_t)pd->ring[r].bd +
PAX_DMA_RM_DESC_RING_SIZE *
PAX_DMA_NUM_BD_BUFFS);
LOG_DBG("Ring%d,allocated Mem:0x%p Size %d\n",
pd->ring[r].idx,
pd->ring[r].ring_mem,
PAX_DMA_PER_RING_ALLOC_SIZE);
LOG_DBG("Ring%d,BD:0x%p, CMPL:0x%p, PL:0x%p\n",
pd->ring[r].idx,
pd->ring[r].bd,
pd->ring[r].cmpl,
pd->ring[r].payload);
/* Prepare ring desc table */
prepare_ring(&(pd->ring[r]));
/* initialize ring */
init_ring(pd, r);
}
/* set ring config done */
rm_cfg_finish(pd);
#ifndef CONFIG_DMA_IPROC_PAX_POLL_MODE
/* Register and enable RM interrupt */
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rm_isr,
DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQN(0));
#else
LOG_INF("%s PAX DMA rings in poll mode!\n", dev->name);
#endif
LOG_INF("%s RM setup %d rings\n", dev->name, pd->used_rings);
return 0;
}
#ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
static void set_pkt_count(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
/* Nothing needs to be programmed here in poll mode */
}
static int wait_for_pkt_completion(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
/* poll for completion */
return peek_ring_cmpl(dev, idx, pl_len + 1);
}
#else
static void set_pkt_count(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = dev->data;
uint32_t val;
/* program packet count for interrupt assertion */
val = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WR_PTR_DDR_CONTROL));
val &= ~RING_DDR_CONTROL_COUNT_MASK;
val |= RING_DDR_CONTROL_COUNT(pl_len);
sys_write32(val, RM_RING_REG(pd, idx,
RING_CMPL_WR_PTR_DDR_CONTROL));
}
static int wait_for_pkt_completion(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = dev->data;
struct dma_iproc_pax_ring_data *ring;
ring = &(pd->ring[idx]);
/* wait for sg dma completion alert */
if (k_sem_take(&ring->alert, K_MSEC(PAX_DMA_TIMEOUT)) != 0) {
LOG_ERR("PAX DMA [ring %d] Timeout!\n", idx);
return -ETIMEDOUT;
}
return process_cmpl_event(dev, idx, pl_len);
}
#endif
static int dma_iproc_pax_do_xfer(const struct device *dev,
enum ring_idx idx,
struct dma_iproc_pax_payload *pl,
uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = dev->data;
const struct dma_iproc_pax_cfg *cfg = dev->config;
int ret = 0, cnt;
struct dma_iproc_pax_ring_data *ring;
void *hdr;
uint32_t toggle_bit;
struct dma_iproc_pax_payload sync_pl;
struct dma_iproc_pax_addr64 sync;
ring = &(pd->ring[idx]);
pl = ring->payload;
/*
* Host sync buffer isn't ready at zephyr/driver init-time
* Read the host address location once at first DMA write
* on that ring.
*/
if ((ring->sync_pci.addr_lo == 0x0) &&
(ring->sync_pci.addr_hi == 0x0)) {
/* populate sync data location */
LOG_DBG("sync addr loc 0x%x\n", cfg->scr_addr_loc);
sync.addr_lo = sys_read32(cfg->scr_addr_loc
+ 4);
sync.addr_hi = sys_read32(cfg->scr_addr_loc);
ring->sync_pci.addr_lo = sync.addr_lo + idx * 4;
ring->sync_pci.addr_hi = sync.addr_hi;
LOG_DBG("ring:%d,sync addr:0x%x.0x%x\n", idx,
ring->sync_pci.addr_hi,
ring->sync_pci.addr_lo);
}
/* account extra sync packet */
ring->curr.sync_data.opaque = ring->curr.opq;
ring->curr.sync_data.total_pkts = pl_len;
memcpy((void *)&ring->sync_loc,
(void *)&(ring->curr.sync_data), 4);
sync_pl.pci_addr = ring->sync_pci.addr_lo |
(uint64_t)ring->sync_pci.addr_hi << 32;
sync_pl.axi_addr = (uintptr_t)&ring->sync_loc;
sync_pl.xfer_sz = 4; /* 4-bytes */
sync_pl.direction = CARD_TO_HOST;
/* Get descriptor write pointer for first header */
hdr = (void *)ring->curr.write_ptr;
/* current toggle bit */
toggle_bit = ring->curr.toggle;
/* current opq value for cmpl check */
ring->curr.opq = curr_pkt_id(ring);
/* DMA desc count for first payload */
rm_header_set_bd_count(hdr, PAX_DMA_RM_DESC_BDCOUNT);
/* Form dma descriptors for total sg payload */
for (cnt = 0; cnt < pl_len; cnt++) {
rm_write_dma_header_desc(next_desc_addr(ring), pl + cnt);
rm_write_axi_addr_desc(next_desc_addr(ring), pl + cnt);
rm_write_pci_addr_desc(next_desc_addr(ring), pl + cnt);
/* Toggle may flip, program updated toggle value */
rm_write_header_desc(next_desc_addr(ring),
curr_toggle_val(ring),
curr_pkt_id(ring),
PAX_DMA_RM_DESC_BDCOUNT);
}
/* Append write sync payload descriptors */
rm_write_dma_header_desc(next_desc_addr(ring), &sync_pl);
rm_write_axi_addr_desc(next_desc_addr(ring), &sync_pl);
rm_write_pci_addr_desc(next_desc_addr(ring), &sync_pl);
/* RM header for next transfer, RM wait on (invalid) toggle bit */
rm_write_header_next_desc(next_desc_addr(ring), ring, alloc_pkt_id(ring),
PAX_DMA_RM_DESC_BDCOUNT);
set_pkt_count(dev, idx, pl_len + 1);
/* Ensure memory write before toggle flip */
dma_mb();
/* set toggle to valid in first header */
rm_header_set_toggle(hdr, toggle_bit);
/* activate the ring */
set_ring_active(pd, idx, true);
ret = wait_for_pkt_completion(dev, idx, pl_len + 1);
if (ret) {
goto err_ret;
}
ret = poll_on_write_sync(dev, ring);
k_mutex_lock(&ring->lock, K_FOREVER);
ring->ring_active = 0;
k_mutex_unlock(&ring->lock);
err_ret:
ring->ring_active = 0;
/* deactivate the ring until next active transfer */
set_ring_active(pd, idx, false);
return ret;
}
static int dma_iproc_pax_configure(const struct device *dev, uint32_t channel,
struct dma_config *cfg)
{
struct dma_iproc_pax_data *pd = dev->data;
struct dma_iproc_pax_ring_data *ring;
uint32_t xfer_sz;
int ret = 0;
#ifdef CONFIG_DMA_IPROC_PAX_DEBUG
uint32_t *pci_addr32;
uint32_t *axi_addr32;
#endif
if (channel >= PAX_DMA_RINGS_MAX) {
LOG_ERR("Invalid ring/channel %d\n", channel);
return -EINVAL;
}
ring = &(pd->ring[channel]);
k_mutex_lock(&ring->lock, K_FOREVER);
if (cfg->block_count > 1) {
/* Scatter/gather list handling is not supported */
ret = -ENOTSUP;
goto err;
}
if (ring->ring_active) {
ret = -EBUSY;
goto err;
}
ring->ring_active = 1;
if (cfg->channel_direction == MEMORY_TO_PERIPHERAL) {
#ifdef CONFIG_DMA_IPROC_PAX_DEBUG
axi_addr32 = (uint32_t *)&cfg->head_block->source_address;
pci_addr32 = (uint32_t *)&cfg->head_block->dest_address;
#endif
ring->payload->direction = CARD_TO_HOST;
ring->payload->pci_addr = cfg->head_block->dest_address;
ring->payload->axi_addr = cfg->head_block->source_address;
} else if (cfg->channel_direction == PERIPHERAL_TO_MEMORY) {
#ifdef CONFIG_DMA_IPROC_PAX_DEBUG
axi_addr32 = (uint32_t *)&cfg->head_block->dest_address;
pci_addr32 = (uint32_t *)&cfg->head_block->source_address;
#endif
ring->payload->direction = HOST_TO_CARD;
ring->payload->pci_addr = cfg->head_block->source_address;
ring->payload->axi_addr = cfg->head_block->dest_address;
} else {
ring->ring_active = 0;
ret = -ENOTSUP;
goto err;
}
xfer_sz = cfg->head_block->block_size;
#ifdef CONFIG_DMA_IPROC_PAX_DEBUG
if (xfer_sz > PAX_DMA_MAX_SIZE) {
LOG_ERR("Unsupported size: %d\n", xfer_size);
ring->ring_active = 0;
ret = -EINVAL;
goto err;
}
if (xfer_sz % PAX_DMA_MIN_SIZE) {
LOG_ERR("Unaligned size 0x%x\n", xfer_size);
ring->ring_active = 0;
ret = -EINVAL;
goto err;
}
if (pci_addr32[0] % PAX_DMA_ADDR_ALIGN) {
LOG_ERR("Unaligned Host addr: 0x%x.0x%x\n",
pci_addr32[1], pci_addr32[0]);
ring->ring_active = 0;
ret = -EINVAL;
goto err;
}
if (axi_addr32[0] % PAX_DMA_ADDR_ALIGN) {
LOG_ERR("Unaligned Card addr: 0x%x.0x%x\n",
axi_addr32[1], axi_addr32[0]);
ring->ring_active = 0;
ret = -EINVAL;
goto err;
}
#endif
ring->payload->xfer_sz = xfer_sz;
ring->dma_callback = cfg->dma_callback;
ring->callback_arg = cfg->user_data;
err:
k_mutex_unlock(&ring->lock);
return ret;
}
static int dma_iproc_pax_transfer_start(const struct device *dev,
uint32_t channel)
{
int ret = 0;
struct dma_iproc_pax_data *pd = dev->data;
struct dma_iproc_pax_ring_data *ring;
if (channel >= PAX_DMA_RINGS_MAX) {
LOG_ERR("Invalid ring %d\n", channel);
return -EINVAL;
}
ring = &(pd->ring[channel]);
/* do dma transfer of single buffer */
ret = dma_iproc_pax_do_xfer(dev, channel, ring->payload, 1);
return ret;
}
static int dma_iproc_pax_transfer_stop(const struct device *dev,
uint32_t channel)
{
return 0;
}
static DEVICE_API(dma, pax_dma_driver_api) = {
.config = dma_iproc_pax_configure,
.start = dma_iproc_pax_transfer_start,
.stop = dma_iproc_pax_transfer_stop,
};
static const struct dma_iproc_pax_cfg pax_dma_cfg = {
.dma_base = DT_INST_REG_ADDR_BY_NAME(0, dme_regs),
.rm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_ring_regs),
.rm_comm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_comm_regs),
.use_rings = DT_INST_PROP(0, dma_channels),
.bd_memory_base = (void *)DT_INST_PROP_BY_IDX(0, bd_memory, 0),
.scr_addr_loc = DT_INST_PROP(0, scr_addr_loc),
.pcie_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, pcie_ep)),
};
DEVICE_DT_INST_DEFINE(0,
&dma_iproc_pax_init,
NULL,
&pax_dma_data,
&pax_dma_cfg,
POST_KERNEL,
CONFIG_DMA_INIT_PRIORITY,
&pax_dma_driver_api);