forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspi_ambiq_spic.c
524 lines (445 loc) · 15 KB
/
spi_ambiq_spic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_spi
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_ambiq);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device_runtime.h>
#include <stdlib.h>
#include <errno.h>
#include "spi_context.h"
#include <am_mcu_apollo.h>
#define PWRCTRL_MAX_WAIT_US 5
typedef int (*ambiq_spi_pwr_func_t)(void);
struct spi_ambiq_config {
uint32_t base;
int size;
uint32_t clock_freq;
const struct pinctrl_dev_config *pcfg;
ambiq_spi_pwr_func_t pwr_func;
void (*irq_config_func)(void);
};
struct spi_ambiq_data {
struct spi_context ctx;
am_hal_iom_config_t iom_cfg;
void *iom_handler;
int inst_idx;
bool cont;
bool pm_policy_state_on;
};
typedef void (*spi_context_update_trx)(struct spi_context *ctx, uint8_t dfs, uint32_t len);
#define SPI_WORD_SIZE 8
static void spi_ambiq_pm_policy_state_lock_get(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct spi_ambiq_data *data = dev->data;
if (!data->pm_policy_state_on) {
data->pm_policy_state_on = true;
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
pm_device_runtime_get(dev);
}
}
}
static void spi_ambiq_pm_policy_state_lock_put(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct spi_ambiq_data *data = dev->data;
if (data->pm_policy_state_on) {
data->pm_policy_state_on = false;
pm_device_runtime_put(dev);
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
}
}
#ifdef CONFIG_SPI_AMBIQ_DMA
static __aligned(32) struct {
__aligned(32) uint32_t buf[CONFIG_SPI_DMA_TCB_BUFFER_SIZE];
} spi_dma_tcb_buf[DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT)] __attribute__((__section__(".nocache")));
static void spi_ambiq_callback(void *callback_ctxt, uint32_t status)
{
const struct device *dev = callback_ctxt;
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* de-assert cs until transfer finished and no need to hold cs */
if (!data->cont) {
spi_context_cs_control(ctx, false);
}
spi_context_complete(ctx, dev, (status == AM_HAL_STATUS_SUCCESS) ? 0 : -EIO);
}
#endif
static void spi_ambiq_reset(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* NULL config to trigger reconfigure on next xfer */
ctx->config = NULL;
spi_context_cs_control(ctx, false);
/* signal any thread waiting on sync semaphore */
spi_context_complete(ctx, dev, -ETIMEDOUT);
/* clean up for next xfer */
k_sem_reset(&ctx->sync);
}
static void spi_ambiq_isr(const struct device *dev)
{
uint32_t ui32Status;
struct spi_ambiq_data *data = dev->data;
am_hal_iom_interrupt_status_get(data->iom_handler, false, &ui32Status);
am_hal_iom_interrupt_clear(data->iom_handler, ui32Status);
am_hal_iom_interrupt_service(data->iom_handler, ui32Status);
}
static int spi_config(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
const struct spi_ambiq_config *cfg = dev->config;
struct spi_context *ctx = &(data->ctx);
data->iom_cfg.eInterfaceMode = AM_HAL_IOM_SPI_MODE;
int ret = 0;
if (spi_context_configured(ctx, config)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_WORD_SIZE_GET(config->operation) != SPI_WORD_SIZE) {
LOG_ERR("Word size must be %d", SPI_WORD_SIZE);
return -ENOTSUP;
}
if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only supports single mode");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("LSB first not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_CPOL) {
if (config->operation & SPI_MODE_CPHA) {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_3;
} else {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_2;
}
} else {
if (config->operation & SPI_MODE_CPHA) {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_1;
} else {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_0;
}
}
if (config->operation & SPI_OP_MODE_SLAVE) {
LOG_ERR("Device mode not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode not supported");
return -ENOTSUP;
}
if (cfg->clock_freq > AM_HAL_IOM_MAX_FREQ) {
LOG_ERR("Clock frequency too high");
return -ENOTSUP;
}
/* Select slower of two: SPI bus frequency for SPI device or SPI controller clock frequency
*/
data->iom_cfg.ui32ClockFreq =
(config->frequency ? MIN(config->frequency, cfg->clock_freq) : cfg->clock_freq);
ctx->config = config;
#ifdef CONFIG_SPI_AMBIQ_DMA
data->iom_cfg.pNBTxnBuf = spi_dma_tcb_buf[data->inst_idx].buf;
data->iom_cfg.ui32NBTxnBufLength = CONFIG_SPI_DMA_TCB_BUFFER_SIZE;
#endif
/* Disable IOM instance as it cannot be configured when enabled*/
ret = am_hal_iom_disable(data->iom_handler);
ret = am_hal_iom_configure(data->iom_handler, &data->iom_cfg);
ret = am_hal_iom_enable(data->iom_handler);
return ret;
}
static int spi_ambiq_xfer_half_duplex(const struct device *dev, am_hal_iom_dir_e dir)
{
am_hal_iom_transfer_t trans = {0};
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
bool is_last = false;
uint32_t rem_num, cur_num = 0;
int ret = 0;
spi_context_update_trx ctx_update;
if (dir == AM_HAL_IOM_FULLDUPLEX) {
return -EINVAL;
} else if (dir == AM_HAL_IOM_RX) {
trans.eDirection = AM_HAL_IOM_RX;
ctx_update = spi_context_update_rx;
} else {
trans.eDirection = AM_HAL_IOM_TX;
ctx_update = spi_context_update_tx;
}
if (dir == AM_HAL_IOM_RX) {
rem_num = ctx->rx_len;
} else {
rem_num = ctx->tx_len;
}
while (rem_num) {
cur_num = (rem_num > AM_HAL_IOM_MAX_TXNSIZE_SPI) ? AM_HAL_IOM_MAX_TXNSIZE_SPI
: rem_num;
trans.ui32NumBytes = cur_num;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
ctx_update(ctx, 1, cur_num);
if ((!spi_context_tx_buf_on(ctx)) && (!spi_context_rx_buf_on(ctx))) {
is_last = true;
}
#ifdef CONFIG_SPI_AMBIQ_DMA
if (AM_HAL_STATUS_SUCCESS !=
am_hal_iom_nonblocking_transfer(data->iom_handler, &trans,
((is_last == true) ? spi_ambiq_callback : NULL),
(void *)dev)) {
return -EIO;
}
if (is_last) {
ret = spi_context_wait_for_completion(ctx);
}
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
rem_num -= cur_num;
if (ret != 0) {
return -EIO;
}
}
return 0;
}
static int spi_ambiq_xfer_full_duplex(const struct device *dev)
{
am_hal_iom_transfer_t trans = {0};
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
bool trx_once = (ctx->tx_len == ctx->rx_len);
int ret = 0;
/* Tx and Rx length must be the same for am_hal_iom_spi_blocking_fullduplex */
trans.eDirection = AM_HAL_IOM_FULLDUPLEX;
trans.ui32NumBytes = MIN(ctx->rx_len, ctx->tx_len);
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
spi_context_update_tx(ctx, 1, trans.ui32NumBytes);
spi_context_update_rx(ctx, 1, trans.ui32NumBytes);
ret = am_hal_iom_spi_blocking_fullduplex(data->iom_handler, &trans);
if (ret != 0) {
return -EIO;
}
/* Transfer the remaining bytes */
if (!trx_once) {
spi_context_update_trx ctx_update;
if (ctx->tx_len) {
trans.eDirection = AM_HAL_IOM_TX;
trans.ui32NumBytes = ctx->tx_len;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
ctx_update = spi_context_update_tx;
} else {
trans.eDirection = AM_HAL_IOM_RX;
trans.ui32NumBytes = ctx->rx_len;
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
ctx_update = spi_context_update_rx;
}
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
ctx_update(ctx, 1, trans.ui32NumBytes);
if (ret != 0) {
return -EIO;
}
}
return 0;
}
static int spi_ambiq_xfer(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret = 0;
data->cont = (config->operation & SPI_HOLD_ON_CS) ? true : false;
spi_context_cs_control(ctx, true);
while (1) {
if (spi_context_tx_buf_on(ctx) && spi_context_rx_buf_on(ctx)) {
if (ctx->rx_buf == ctx->tx_buf) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
} else if (!(config->operation & SPI_HALF_DUPLEX)) {
ret = spi_ambiq_xfer_full_duplex(dev);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI full-duplex comm error: %d", ret);
return ret;
}
}
}
if (spi_context_tx_on(ctx)) {
if (ctx->tx_buf == NULL) {
spi_context_update_tx(ctx, 1, ctx->tx_len);
} else {
ret = spi_ambiq_xfer_half_duplex(dev, AM_HAL_IOM_TX);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI TX comm error: %d", ret);
return ret;
}
}
} else if (spi_context_rx_on(ctx)) {
if (ctx->rx_buf == NULL) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
} else {
ret = spi_ambiq_xfer_half_duplex(dev, AM_HAL_IOM_RX);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI Rx comm error: %d", ret);
return ret;
}
}
} else {
break;
}
}
#ifndef CONFIG_SPI_AMBIQ_DMA
if (!data->cont) {
spi_context_cs_control(ctx, false);
spi_context_complete(ctx, dev, ret);
}
#endif
return ret;
}
static int spi_ambiq_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_ambiq_data *data = dev->data;
int ret = 0;
if (!tx_bufs && !rx_bufs) {
return 0;
}
/* context setup */
spi_context_lock(&data->ctx, false, NULL, NULL, config);
spi_ambiq_pm_policy_state_lock_get(dev);
ret = spi_config(dev, config);
if (ret) {
LOG_ERR("spi_config failed: %d", ret);
goto xfer_end;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
ret = spi_ambiq_xfer(dev, config);
xfer_end:
spi_ambiq_pm_policy_state_lock_put(dev);
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_ambiq_release(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
am_hal_iom_status_t iom_status;
am_hal_iom_status_get(data->iom_handler, &iom_status);
if ((iom_status.bStatIdle != IOM0_STATUS_IDLEST_IDLE) ||
(iom_status.bStatCmdAct == IOM0_STATUS_CMDACT_ACTIVE) ||
(iom_status.ui32NumPendTransactions)) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static DEVICE_API(spi, spi_ambiq_driver_api) = {
.transceive = spi_ambiq_transceive,
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_ambiq_release,
};
static int spi_ambiq_init(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
const struct spi_ambiq_config *cfg = dev->config;
int ret = 0;
if (AM_HAL_STATUS_SUCCESS !=
am_hal_iom_initialize((cfg->base - IOM0_BASE) / cfg->size, &data->iom_handler)) {
LOG_ERR("Fail to initialize SPI\n");
return -ENXIO;
}
ret = cfg->pwr_func();
ret |= pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
ret |= spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
LOG_ERR("Fail to config SPI pins\n");
goto end;
}
#ifdef CONFIG_SPI_AMBIQ_DMA
am_hal_iom_interrupt_clear(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
am_hal_iom_interrupt_enable(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
cfg->irq_config_func();
#endif
end:
if (ret < 0) {
am_hal_iom_uninitialize(data->iom_handler);
} else {
spi_context_unlock_unconditionally(&data->ctx);
}
return ret;
}
#ifdef CONFIG_PM_DEVICE
static int spi_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
{
struct spi_ambiq_data *data = dev->data;
uint32_t ret;
am_hal_sysctrl_power_state_e status;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
status = AM_HAL_SYSCTRL_WAKE;
break;
case PM_DEVICE_ACTION_SUSPEND:
status = AM_HAL_SYSCTRL_DEEPSLEEP;
break;
default:
return -ENOTSUP;
}
ret = am_hal_iom_power_ctrl(data->iom_handler, status, true);
if (ret != AM_HAL_STATUS_SUCCESS) {
LOG_ERR("am_hal_iom_power_ctrl failed: %d", ret);
return -EPERM;
} else {
return 0;
}
}
#endif /* CONFIG_PM_DEVICE */
#define AMBIQ_SPI_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static int pwr_on_ambiq_spi_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static void spi_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_ambiq_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}; \
static struct spi_ambiq_data spi_ambiq_data##n = { \
SPI_CONTEXT_INIT_LOCK(spi_ambiq_data##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_ambiq_data##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx).inst_idx = n}; \
static const struct spi_ambiq_config spi_ambiq_config##n = { \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.clock_freq = DT_INST_PROP(n, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_config_func = spi_irq_config_func_##n, \
.pwr_func = pwr_on_ambiq_spi_##n}; \
PM_DEVICE_DT_INST_DEFINE(n, spi_ambiq_pm_action); \
SPI_DEVICE_DT_INST_DEFINE(n, spi_ambiq_init, PM_DEVICE_DT_INST_GET(n), &spi_ambiq_data##n, \
&spi_ambiq_config##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_SPI_INIT)