-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretraining_dataset.py
362 lines (308 loc) · 13.2 KB
/
pretraining_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import re
import os
import numpy as np
import pandas as pd
import cv2
import tqdm
import pickle
import numpy.random as random
import torch
import torch.utils.data as data
from torchvision import transforms
from PIL import Image
from nltk.tokenize import RegexpTokenizer
from transformers import AutoTokenizer
from VSWL.src.constants import *
class MultimodalPretrainingDataset(data.Dataset):
def __init__(self, cfg, split="train", transform=None):
self.cfg = cfg
self.transform = transform
self.max_word_num = self.cfg.data.text.captions_per_image
self.tensor_transform = transforms.Compose(
[
transforms.ToTensor()])
csv_path = os.path.join(INB_DATA_DIR, INB_MASTER_CSV)
self.df = pd.read_csv(csv_path)
# load studies and study to text mapping
self.filenames, self.path2sent, self.label, self.ato, self.keyword = self.load_text_data(split)
# create BERT tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.cfg.model.text.bert_type)
def load_text_data(self, split):
filepath = os.path.join("captions.pickle")
if not os.path.isfile(filepath):
print(f"Caption file {filepath} does not exit. Creating captions...")
path2sent, to_remove = self.create_path_2_sent_mapping(
self.df, self.max_word_num
)
with open(filepath, "wb") as f:
pickle.dump([path2sent, to_remove], f, protocol=2)
print("Save to: ", filepath)
else:
with open(filepath, "rb") as f:
print(f"Loading captions from {filepath}")
path2sent, to_remove = pickle.load(f)
# filter studies to use for current split
filenames = self.df[self.df[INB_SPLIT_COL] == split][
INB_PATH_COL
].tolist()
label = self.df[self.df[INB_SPLIT_COL] == split][
'pathology'].tolist()
ato = self.df[self.df[INB_SPLIT_COL] == split][
'ato'
].tolist()
keyword = self.df[self.df[INB_SPLIT_COL] == split][
'keyword'
].tolist()
return filenames, path2sent, label, ato, keyword
def get_caption(self, path):
series_sents = self.path2sent[path]
if self.cfg.data.text.full_report is True:
sent = " ".join(series_sents)
else:
sent_ix = random.randint(0, len(series_sents))
sent = series_sents[sent_ix]
tokens = self.tokenizer(
sent,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=self.cfg.data.text.word_num,
)
x_len = len([t for t in tokens["input_ids"][0] if t != 0])
return tokens, x_len
def get_imgs(self, img_path, transform=None):
lcc = "path"
lmlo = "path"
rcc = "path"
rmlo = "path"
x1 = cv2.imread(lcc, 0)
x2 = cv2.imread(lmlo, 0)
x3 = cv2.imread(rcc, 0)
x4 = cv2.imread(rmlo, 0)
mask_path =[]
lcc_mask = "path"
lmlo_mask = "path"
rcc_mask = "path"
rmlo_mask = "path"
mask_path.append(lcc_mask)
mask_path.append(lmlo_mask)
mask_path.append(rcc_mask)
mask_path.append(rmlo_mask)
mask = []
for i in range(len(mask_path)):
if (os.path.exists(mask_path[i])):
mask_tmp = cv2.imread(mask_path[i], 0)
mask_tmp = self._resize_img(mask_tmp, self.cfg.data.image.imsize)
mask_tmp = Image.fromarray(mask_tmp)
else:
mask_tmp = Image.new('L', (512, 512), (0))
mask_tmp = self.tensor_transform(mask_tmp)
mask.append(mask_tmp)
mask = torch.stack(mask)
# tranform images
x1 = self._resize_img(x1, self.cfg.data.image.imsize)
img1 = Image.fromarray(x1).convert("RGB")
x2 = self._resize_img(x2, self.cfg.data.image.imsize)
img2 = Image.fromarray(x2).convert("RGB")
x3 = self._resize_img(x3, self.cfg.data.image.imsize)
img3 = Image.fromarray(x3).convert("RGB")
x4 = self._resize_img(x4, self.cfg.data.image.imsize)
img4 = Image.fromarray(x4).convert("RGB")
if transform is not None:
img1 = transform(img1)
img2 = transform(img2)
img3 = transform(img3)
img4 = transform(img4)
img = torch.cat((img1,img2,img3,img4),0)
return img, mask #[3*4,w,h]
def __getitem__(self, index):
key = self.filenames[index]
imgs,mask = self.get_imgs(key, self.transform)
ato = self.ato[index]
xx = ato.split()
xx = np.array(xx).astype(float)
ato = torch.FloatTensor(xx.reshape((3, 1, 1)))
# randomly select a sentence
caps, cap_len = self.get_caption(key)
label = self.label[index]
label = torch.tensor(label, dtype=torch.long)
keyword = self.keyword[index]
return imgs, mask, caps, cap_len, key, label, ato, keyword
def __len__(self):
return len(self.filenames)
def create_path_2_sent_mapping(self, df, max_word_num):
sent_lens, num_sents, to_remove = [], [], []
path2sent = {}
# translator = Translator()
for idx, row in tqdm.tqdm(df.iterrows(), total=df.shape[0]):
# pick impression, findings, last_paragraph
captions = ""
if type(row[INB_REPORT_COL]) == str:
captions += row[INB_REPORT_COL]
# use space instead of newline
captions = captions.replace("\n", " ")
# split sentences
splitter = re.compile("[0-9]+\.")
captions = splitter.split(captions)
captions = [point.split(".") for point in captions]
captions = [sent for point in captions for sent in point]
cnt = 0
study_sent = []
# create tokens from captions
for cap in captions:
if len(cap) == 0:
continue
cap = cap.replace("\ufffd\ufffd", " ")
# picks out sequences of alphanumeric characters as tokens
# and drops everything else
tokenizer = RegexpTokenizer(r"\w+")
tokens = tokenizer.tokenize(cap.lower())
# filter tokens for current sentence
included_tokens = []
for t in tokens:
t = t.encode("ascii", "ignore").decode("ascii")
# if len(t) > 0:
included_tokens.append(t)
study_sent.append(" ".join(included_tokens))
# check if reached maximum number of words in the sentences
cnt += len(included_tokens)
if cnt == max_word_num:
break
sent_lens.append(len(included_tokens))
num_sents.append(len(study_sent))
path2sent[row[INB_PATH_COL]] = study_sent
# get report word/setence statistics
sent_lens = np.array(sent_lens)
num_sents = np.array(num_sents)
print(
f"sent lens: {sent_lens.min()},{sent_lens.mean()},{sent_lens.max()} [{np.percentile(sent_lens, 5)}, {np.percentile(sent_lens, 95)}]"
)
print(
f"num sents: {num_sents.min()},{num_sents.mean()},{num_sents.max()} [{np.percentile(num_sents, 5)}, {np.percentile(num_sents, 95)}]"
)
return path2sent, to_remove
def _resize_img(self, img, scale):
"""
Args:
img - image as numpy array (cv2)
scale - desired output image-size as scale x scale
Return:
image resized to scale x scale with shortest dimension 0-padded
"""
size = img.shape
max_dim = max(size)
max_ind = size.index(max_dim)
# Resizing
if max_ind == 0:
# image is heigher
wpercent = scale / float(size[0])
hsize = int((float(size[1]) * float(wpercent)))
desireable_size = (scale, hsize)
else:
# image is wider
hpercent = scale / float(size[1])
wsize = int((float(size[0]) * float(hpercent)))
desireable_size = (wsize, scale)
resized_img = cv2.resize(
img, desireable_size[::-1], interpolation=cv2.INTER_AREA
) # this flips the desireable_size vector
# Padding
if max_ind == 0:
# height fixed at scale, pad the width
pad_size = scale - resized_img.shape[1]
left = int(np.floor(pad_size / 2))
right = int(np.ceil(pad_size / 2))
top = int(0)
bottom = int(0)
else:
# width fixed at scale, pad the height
pad_size = scale - resized_img.shape[0]
top = int(np.floor(pad_size / 2))
bottom = int(np.ceil(pad_size / 2))
left = int(0)
right = int(0)
resized_img = np.pad(
resized_img, [(top, bottom), (left, right)], "constant", constant_values=0
)
return resized_img
def multimodal_collate_fn(batch):
"""sort sequence"""
imgs, imgslcc, imgslmlo, imgsrcc, imgsrmlo, masks, cap_len, ids, tokens, attention, path, labels, atomo, keywords =[], [], [], [], [], [], [], [], [], [], [], [], [], []
# flattern
for b in batch:
img, msk, cap, cap_l, p, label, ato, keyword = b
img1 = img.view(4, 3, img.size(1), img.size(2))
imgslcc.append(torch.split(img1, 1, dim=0)[0])
# imgslcc = imgslcc.view(imgslcc.size(0))
imgslmlo.append(torch.split(img1, 1, dim=0)[1])
imgsrcc.append(torch.split(img1, 1, dim=0)[2])
imgsrmlo.append(torch.split(img1, 1, dim=0)[3])
imgs.append(img)
masks.append(msk)
cap_len.append(cap_l)
ids.append(cap["input_ids"])
tokens.append(cap["token_type_ids"])
attention.append(cap["attention_mask"])
# path.append(p.split("/")[-1].split("_")[0])
path.append(p)
labels.append(label)
atomo.append(ato)
keywords.append(keyword)
# stack
imgs = torch.stack(imgs)
imgslcc = torch.stack(imgslcc)[:, 0, :, :, :]
imgslmlo = torch.stack(imgslmlo)[:, 0, :, :, :]
imgsrcc = torch.stack(imgsrcc)[:, 0, :, :, :]
imgsrmlo = torch.stack(imgsrmlo)[:, 0, :, :, :]
masks = torch.stack(masks)
# ids = torch.repeat(ids, 4)
# ids = [itm for itm in ids for i in range(4)]
ids = torch.stack(ids).squeeze()
# tokens = [itm for itm in tokens for i in range(4)]
tokens = torch.stack(tokens).squeeze()
# attention = [itm for itm in attention for i in range(4)]
attention = torch.stack(attention).squeeze()
# labels = [itm for itm in labels for i in range(4)]
label = torch.stack(labels)
# atomo = [itm for itm in atomo for i in range(4)]
atomo = torch.stack(atomo)
# keyword = torch.stack(keywords)
# keyword = keywords
# sort and add to dictionary
sorted_cap_lens, sorted_cap_indices = torch.sort(torch.tensor(cap_len), 0, True)
path_tmp = []
keyword_tmp = []
for i in range(len(path)):
lcc = "path"
lmlo = "path"
rcc = "path"
rmlo = "path"
path_tmp.append(lcc)
path_tmp.append(lmlo)
path_tmp.append(rcc)
path_tmp.append(rmlo)
keyword_tmp.append(keywords[sorted_cap_indices[i]])
return_dict = {
"imgs": imgs[sorted_cap_indices].view(len(path) * 4, 3, imgs[sorted_cap_indices].size(2),
imgs[sorted_cap_indices].size(3)),
"caption_ids": torch.stack([itm for itm in ids[sorted_cap_indices] for i in range(4)]),
"token_type_ids": torch.stack([itm for itm in tokens[sorted_cap_indices] for i in range(4)]),
"attention_mask": torch.stack([itm for itm in attention[sorted_cap_indices] for i in range(4)]),
"imgslcc": imgslcc[sorted_cap_indices].view(len(path), 3, imgslcc[sorted_cap_indices].size(2),
imgslcc[sorted_cap_indices].size(3)),
"imgslmlo": imgslmlo[sorted_cap_indices].view(len(path), 3, imgslmlo[sorted_cap_indices].size(2),
imgslmlo[sorted_cap_indices].size(3)),
"imgsrcc": imgsrcc[sorted_cap_indices].view(len(path), 3, imgsrcc[sorted_cap_indices].size(2),
imgsrcc[sorted_cap_indices].size(3)),
"imgsrmlo": imgsrmlo[sorted_cap_indices].view(len(path), 3, imgsrmlo[sorted_cap_indices].size(2),
imgsrmlo[sorted_cap_indices].size(3)),
"mask": masks[sorted_cap_indices].view(len(path) * 4, 1, masks[sorted_cap_indices].size(3),
masks[sorted_cap_indices].size(4)),
"cap_lens": [itm for itm in sorted_cap_lens for i in range(4)],
# "path": [itm for itm in path_tmp for i in range(4)],
"path": path_tmp,
"label": torch.stack([itm for itm in label[sorted_cap_indices] for i in range(4)]),
"ato": torch.stack([itm for itm in atomo[sorted_cap_indices] for i in range(4)]),
"keyword": keyword_tmp
}
return return_dict