forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi_atop_filter.sv
379 lines (344 loc) · 13.7 KB
/
axi_atop_filter.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Author:
// Andreas Kurth <[email protected]>
// AXI ATOP Filter: This module filters atomic operations (ATOPs), i.e., write transactions that
// have a non-zero `aw_atop` value, from its `slv` to its `mst` port. This module guarantees that:
//
// 1) `aw_atop` is always zero on the `mst` port;
//
// 2) write transactions with non-zero `aw_atop` on the `slv` port are handled in conformance with
// the AXI standard by replying to such write transactions with the proper B and R responses. The
// response code on atomic operations that reach this module is always SLVERR
// (implementation-specific, not defined in the AXI standard).
//
// This module is intended to be placed between masters that may issue ATOPs and slaves that do not
// support ATOPs. That way, this module ensures that the AXI protocol remains in a defined state on
// systems with mixed ATOP capabilities.
//
// Interface note:
// The AXI standard specifies that there may be no ordering requirements between different atomic
// bursts (i.e., a burst started by an AW with ATOP other than 0) and none between atomic bursts and
// non-atomic bursts [E2.1.4]. That is, an atomic burst may never have the same ID as any other
// write or read burst that is ongoing at the same time.
module axi_atop_filter #(
parameter int unsigned AxiIdWidth = 0, // Synopsys DC requires a default value for parameters.
// Maximum number of AXI write bursts outstanding at the same time
parameter int unsigned AxiMaxWriteTxns = 0,
// AXI request & response type
parameter type req_t = logic,
parameter type resp_t = logic
) (
input logic clk_i,
input logic rst_ni,
// slave port
input req_t slv_req_i,
output resp_t slv_resp_o,
// master port
output req_t mst_req_o,
input resp_t mst_resp_i
);
typedef logic [$clog2(AxiMaxWriteTxns+1)-1:0] cnt_t;
cnt_t w_cnt_d, w_cnt_q;
typedef enum logic [2:0] { W_FEEDTHROUGH, BLOCK_AW, ABSORB_W, INJECT_B, WAIT_R } w_state_t;
w_state_t w_state_d, w_state_q;
typedef enum logic { R_FEEDTHROUGH, INJECT_R } r_state_t;
r_state_t r_state_d, r_state_q;
typedef logic [AxiIdWidth-1:0] id_t;
id_t id_d, id_q;
typedef logic [7:0] len_t;
len_t r_beats_d, r_beats_q;
typedef struct packed {
len_t len;
} r_resp_cmd_t;
r_resp_cmd_t r_resp_cmd_push, r_resp_cmd_pop;
logic r_resp_cmd_push_valid, r_resp_cmd_push_ready,
r_resp_cmd_pop_valid, r_resp_cmd_pop_ready;
// Manage AW, W, and B channels.
always_comb begin
// Defaults:
// Disable AW and W handshakes.
mst_req_o.aw_valid = 1'b0;
slv_resp_o.aw_ready = 1'b0;
mst_req_o.w_valid = 1'b0;
slv_resp_o.w_ready = 1'b0;
// Feed write responses through.
mst_req_o.b_ready = slv_req_i.b_ready;
slv_resp_o.b_valid = mst_resp_i.b_valid;
slv_resp_o.b = mst_resp_i.b;
// Keep ID stored for B and R response.
id_d = id_q;
// Do not push R response commands.
r_resp_cmd_push_valid = 1'b0;
// Keep the current state.
w_state_d = w_state_q;
unique case (w_state_q)
W_FEEDTHROUGH: begin
// Feed AW channel through if the maximum number of outstanding bursts is not reached.
if (w_cnt_q < AxiMaxWriteTxns) begin
mst_req_o.aw_valid = slv_req_i.aw_valid;
slv_resp_o.aw_ready = mst_resp_i.aw_ready;
end
// Feed W channel through if at least one AW request is outstanding. This does not allow
// W beats before the corresponding AW because we need to know the `atop` of an AW to decide
// what to do with the W beats.
if (w_cnt_q > 0) begin
mst_req_o.w_valid = slv_req_i.w_valid;
slv_resp_o.w_ready = mst_resp_i.w_ready;
end
// Filter out AWs that are atomic operations.
if (slv_req_i.aw_valid && slv_req_i.aw.atop[5:4] != axi_pkg::ATOP_NONE) begin
mst_req_o.aw_valid = 1'b0; // Do not let AW pass to master port.
slv_resp_o.aw_ready = 1'b1; // Absorb AW on slave port.
id_d = slv_req_i.aw.id; // Store ID for B response.
// All atomic operations except atomic stores require a response on the R channel.
if (slv_req_i.aw.atop[5:4] != axi_pkg::ATOP_ATOMICSTORE) begin
// Push R response command. We do not have to wait for the ready of the register
// because we know it is ready: we are its only master and will wait for the register to
// be emptied before going back to the `W_FEEDTHROUGH` state.
r_resp_cmd_push_valid = 1'b1;
end
// If there are outstanding W bursts, block the AW channel and let the W bursts complete.
if (w_cnt_q > 0) begin
w_state_d = BLOCK_AW;
// If there are no outstanding W bursts, absorb the W beats for this atomic AW.
end else begin
mst_req_o.w_valid = 1'b0; // Do not let W beats pass to master port.
slv_resp_o.w_ready = 1'b1; // Absorb W beats on slave port.
if (slv_req_i.w_valid && slv_req_i.w.last) begin
// If the W beat is valid and the last, proceed by injecting the B response.
w_state_d = INJECT_B;
end else begin
// Otherwise continue with absorbing W beats.
w_state_d = ABSORB_W;
end
end
end
end
BLOCK_AW: begin
// Feed W channel through to let outstanding bursts complete.
if (w_cnt_q > 0) begin
mst_req_o.w_valid = slv_req_i.w_valid;
slv_resp_o.w_ready = mst_resp_i.w_ready;
end else begin
// If there are no more outstanding W bursts, start absorbing the next W burst.
slv_resp_o.w_ready = 1'b1;
if (slv_req_i.w_valid && slv_req_i.w.last) begin
// If the W beat is valid and the last, proceed by injecting the B response.
w_state_d = INJECT_B;
end else begin
// Otherwise continue with absorbing W beats.
w_state_d = ABSORB_W;
end
end
end
ABSORB_W: begin
// Absorb all W beats of the current burst.
slv_resp_o.w_ready = 1'b1;
if (slv_req_i.w_valid && slv_req_i.w.last) begin
w_state_d = INJECT_B;
end
end
INJECT_B: begin
// Pause forwarding of B response.
mst_req_o.b_ready = 1'b0;
// Inject error response instead. Since the B channel has an ID and the atomic burst we are
// replying to is guaranteed to be the only burst with this ID in flight, we do not have to
// observe any ordering and can immediately inject on the B channel.
slv_resp_o.b = '0;
slv_resp_o.b.id = id_q;
slv_resp_o.b.resp = axi_pkg::RESP_SLVERR;
slv_resp_o.b_valid = 1'b1;
if (slv_req_i.b_ready) begin
// If not all beats of the R response have been injected, wait for them. Otherwise, return
// to `W_FEEDTHROUGH`.
if (r_resp_cmd_pop_valid && !r_resp_cmd_pop_ready) begin
w_state_d = WAIT_R;
end else begin
w_state_d = W_FEEDTHROUGH;
end
end
end
WAIT_R: begin
// Wait with returning to `W_FEEDTHROUGH` until all beats of the R response have been
// injected.
if (!r_resp_cmd_pop_valid) begin
w_state_d = W_FEEDTHROUGH;
end
end
default: w_state_d = W_FEEDTHROUGH;
endcase
end
// Connect signals on AW and W channel that are not managed by the control FSM from slave port to
// master port.
// Feed-through of the AW and W vectors, make sure that downstream aw.atop is always zero
always_comb begin
// overwrite the atop signal
mst_req_o.aw = slv_req_i.aw;
mst_req_o.aw.atop = '0;
end
assign mst_req_o.w = slv_req_i.w;
// Manage R channel.
always_comb begin
// Defaults:
// Feed read responses through.
slv_resp_o.r = mst_resp_i.r;
slv_resp_o.r_valid = mst_resp_i.r_valid;
mst_req_o.r_ready = slv_req_i.r_ready;
// Do not pop R response command.
r_resp_cmd_pop_ready = 1'b0;
// Keep the current value of the beats counter.
r_beats_d = r_beats_q;
// Keep the current state.
r_state_d = r_state_q;
unique case (r_state_q)
R_FEEDTHROUGH: begin
if (r_resp_cmd_pop_valid) begin
// Upon a command to inject an R response, immediately proceed with doing so because there
// are no ordering requirements with other bursts that may be ongoing on the R channel at
// this moment.
r_beats_d = r_resp_cmd_pop.len;
r_state_d = INJECT_R;
end
end
INJECT_R: begin
mst_req_o.r_ready = 1'b0;
slv_resp_o.r = '0;
slv_resp_o.r.id = id_q;
slv_resp_o.r.resp = axi_pkg::RESP_SLVERR;
slv_resp_o.r.last = (r_beats_q == '0);
slv_resp_o.r_valid = 1'b1;
if (slv_req_i.r_ready) begin
if (slv_resp_o.r.last) begin
r_resp_cmd_pop_ready = 1'b1;
r_state_d = R_FEEDTHROUGH;
end else begin
r_beats_d -= 1;
end
end
end
default: begin
r_state_d = R_FEEDTHROUGH;
end
endcase
end
// Feed all signals on AR through.
assign mst_req_o.ar = slv_req_i.ar;
assign mst_req_o.ar_valid = slv_req_i.ar_valid;
assign slv_resp_o.ar_ready = mst_resp_i.ar_ready;
// Keep track of outstanding downstream write bursts and responses.
always_comb begin
w_cnt_d = w_cnt_q;
if (mst_req_o.aw_valid && mst_resp_i.aw_ready) begin
w_cnt_d += 1;
end
if (mst_req_o.w_valid && mst_resp_i.w_ready && mst_req_o.w.last) begin
w_cnt_d -= 1;
end
end
always_ff @(posedge clk_i, negedge rst_ni) begin
if (!rst_ni) begin
id_q <= '0;
r_beats_q <= '0;
r_state_q <= R_FEEDTHROUGH;
w_cnt_q <= '0;
w_state_q <= W_FEEDTHROUGH;
end else begin
id_q <= id_d;
r_beats_q <= r_beats_d;
r_state_q <= r_state_d;
w_cnt_q <= w_cnt_d;
w_state_q <= w_state_d;
end
end
stream_register #(
.T(r_resp_cmd_t)
) r_resp_cmd (
.clk_i (clk_i),
.rst_ni (rst_ni),
.clr_i (1'b0),
.testmode_i (1'b0),
.valid_i (r_resp_cmd_push_valid),
.ready_o (r_resp_cmd_push_ready),
.data_i (r_resp_cmd_push),
.valid_o (r_resp_cmd_pop_valid),
.ready_i (r_resp_cmd_pop_ready),
.data_o (r_resp_cmd_pop)
);
assign r_resp_cmd_push.len = slv_req_i.aw.len;
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AxiIdWidth >= 1) else $fatal(1, "AXI ID width must be at least 1!");
assert (AxiMaxWriteTxns >= 1)
else $fatal(1, "Maximum number of outstanding write transactions must be at least 1!");
end
`endif
// pragma translate_on
endmodule
`include "axi/assign.svh"
`include "axi/typedef.svh"
// interface wrapper
module axi_atop_filter_intf #(
parameter int unsigned AXI_ID_WIDTH = 0, // Synopsys DC requires a default value for parameters.
parameter int unsigned AXI_ADDR_WIDTH = 0,
parameter int unsigned AXI_DATA_WIDTH = 0,
parameter int unsigned AXI_USER_WIDTH = 0,
// Maximum number of AXI write bursts outstanding at the same time
parameter int unsigned AXI_MAX_WRITE_TXNS = 0
) (
input logic clk_i,
input logic rst_ni,
AXI_BUS.Slave slv,
AXI_BUS.Master mst
);
typedef logic [AXI_ID_WIDTH-1:0] id_t;
typedef logic [AXI_ADDR_WIDTH-1:0] addr_t;
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
typedef logic [AXI_USER_WIDTH-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T ( aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T ( w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T ( b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T ( ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T ( r_chan_t, data_t, id_t, user_t)
`AXI_TYPEDEF_REQ_T ( req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_TYPEDEF_RESP_T ( resp_t, b_chan_t, r_chan_t)
req_t slv_req, mst_req;
resp_t slv_resp, mst_resp;
`AXI_ASSIGN_TO_REQ ( slv_req, slv )
`AXI_ASSIGN_FROM_RESP ( slv, slv_resp )
`AXI_ASSIGN_FROM_REQ ( mst , mst_req )
`AXI_ASSIGN_TO_RESP ( mst_resp, mst )
axi_atop_filter #(
.AxiIdWidth ( AXI_ID_WIDTH ),
// Maximum number of AXI write bursts outstanding at the same time
.AxiMaxWriteTxns ( AXI_MAX_WRITE_TXNS ),
// AXI request & response type
.req_t ( req_t ),
.resp_t ( resp_t )
) i_axi_atop_filter (
.clk_i,
.rst_ni,
.slv_req_i ( slv_req ),
.slv_resp_o ( slv_resp ),
.mst_req_o ( mst_req ),
.mst_resp_i ( mst_resp )
);
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AXI_ADDR_WIDTH >= 1) else $fatal(1, "AXI ADDR width must be at least 1!");
assert (AXI_DATA_WIDTH >= 1) else $fatal(1, "AXI DATA width must be at least 1!");
assert (AXI_USER_WIDTH >= 1) else $fatal(1, "AXI USER width must be at least 1!");
end
`endif
// pragma translate_on
endmodule