Skip to content

Latest commit

 

History

History
208 lines (162 loc) · 4.45 KB

File metadata and controls

208 lines (162 loc) · 4.45 KB

English Version

题目描述

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

 

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10] 
输出:1

 

提示:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

解法

动态规划。

完全背包问题。

Python3

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0] * (amount + 1)
        dp[0] = 1
        for coin in coins:
            for j in range(coin, amount + 1):
                dp[j] += dp[j - coin]
        return dp[-1]

Java

class Solution {
    public int change(int amount, int[] coins) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        dp[0][0] = 1;
        for (int i = 1; i <= m; ++i) {
            for (int j = 0; j <= amount; ++j) {
                for (int k = 0; k * coins[i - 1] <= j; ++k) {
                    dp[i][j] += dp[i - 1][j - coins[i - 1] * k];
                }
            }
        }
        return dp[m][amount];
    }
}

下面对 k 这层循环进行优化:

由于:

  • dp[i][j] = dp[i - 1][j] + dp[i - 1][j - v] + dp[i - 1][j - 2v] + ... + dp[i - 1][j - kv]
  • dp[i][j - v] = dp[i - 1][j - v] + dp[i - 1][j - 2v] + ... + dp[i - 1][j - kv]

因此 dp[i][j] = dp[i - 1][j] + dp[i][j - v]

class Solution {
    public int change(int amount, int[] coins) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        dp[0][0] = 1;
        for (int i = 1; i <= m; ++i) {
            int v = coins[i - 1];
            for (int j = 0; j <= amount; ++j) {
                dp[i][j] = dp[i - 1][j];
                if (j >= v) {
                    dp[i][j] += dp[i][j - v];
                }
            }
        }
        return dp[m][amount];
    }
}

空间优化:

class Solution {
    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int coin : coins) {
            // 顺序遍历,0-1背包问题是倒序遍历
            for (int j = coin; j <= amount; j++) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }
}

TypeScript

function change(amount: number, coins: number[]): number {
    let dp = new Array(amount + 1).fill(0);
    dp[0] = 1;
    for (let coin of coins) {
        for (let i = coin; i <= amount; ++i) {
            dp[i] += dp[i - coin];
        }
    }
    return dp.pop();
}

Go

func change(amount int, coins []int) int {
	dp := make([]int, amount+1)
	dp[0] = 1
	for _, coin := range coins {
		for j := coin; j <= amount; j++ {
			dp[j] += dp[j-coin]
		}
	}
	return dp[amount]
}

C++

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1);
        dp[0] = 1;
        for (auto coin : coins) {
            for (int j = coin; j <= amount; ++j) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }
};

...