一个班上有 n
个同学,其中一些彼此是朋友,另一些不是。朋友关系是可以传递的,如果 a 与 b
直接是朋友,且 b
与 c
是直接朋友,那么 a
与 c
就是间接朋友。
定义 朋友圈 就是一组直接或者间接朋友的同学集合。
给定一个 n x n
的矩阵 isConnected
表示班上的朋友关系,其中 isConnected[i][j] = 1
表示第 i
个同学和第 j
个同学是直接朋友,而 isConnected[i][j] = 0
表示二人不是直接朋友。
返回矩阵中 朋友圈的数量。
示例 1:
输入:isConnected
= [[1,1,0],[1,1,0],[0,0,1]]
输出:2
示例 2:
输入:isConnected
= [[1,0,0],[0,1,0],[0,0,1]]
输出:3
提示:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j]
为1
或0
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
注意:本题与主站 547 题相同: https://leetcode-cn.com/problems/number-of-provinces/
方法一:深度优先搜索
判断城市之间是否属于同一个连通分量,最后连通分量的总数即为结果。
方法二:并查集
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
深度优先搜索:
class Solution:
def findCircleNum(self, isConnected: List[List[int]]) -> int:
def dfs(i):
for j in range(n):
if not visited[j] and isConnected[i][j] == 1:
visited[j] = True
dfs(j)
n = len(isConnected)
visited = [False] * n
num = 0
for i in range(n):
if not visited[i]:
dfs(i)
num += 1
return num
并查集:
class Solution:
def findCircleNum(self, isConnected: List[List[int]]) -> int:
n = len(isConnected)
p = list(range(n))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for i in range(n):
for j in range(n):
if i != j and isConnected[i][j] == 1:
p[find(i)] = find(j)
return sum(i == find(i) for i in range(n))
深度优先搜索:
class Solution {
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
boolean[] visited = new boolean[n];
int num = 0;
for (int i = 0; i < n; ++i) {
if (!visited[i]) {
dfs(isConnected, visited, i, n);
++num;
}
}
return num;
}
private void dfs(int[][] isConnected, boolean[] visited, int i, int n) {
for (int j = 0; j < n; ++j) {
if (!visited[j] && isConnected[i][j] == 1) {
visited[j] = true;
dfs(isConnected, visited, j, n);
}
}
}
}
并查集:
class Solution {
private int[] p;
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (isConnected[i][j] == 1) {
p[find(i)] = find(j);
}
}
}
int cnt = 0;
for (int i = 0; i < n; ++i) {
if (i == find(i)) {
++cnt;
}
}
return cnt;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
int findCircleNum(vector<vector<int>> &isConnected) {
int n = isConnected.size();
p.resize(n);
for (int i = 0; i < n; ++i)
{
p[i] = i;
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
if (isConnected[i][j])
{
p[find(i)] = find(j);
}
}
}
int cnt = 0;
for (int i = 0; i < n; ++i)
{
if (i == find(i))
++cnt;
}
return cnt;
}
int find(int x) {
if (p[x] != x)
{
p[x] = find(p[x]);
}
return p[x];
}
};
var p []int
func findCircleNum(isConnected [][]int) int {
n := len(isConnected)
p = make([]int, n)
for i := 1; i < n; i++ {
p[i] = i
}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if isConnected[i][j] == 1 {
p[find(i)] = find(j)
}
}
}
cnt := 0
for i := 0; i < n; i++ {
if i == find(i) {
cnt++
}
}
return cnt
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}