给定一个二叉树的根 root
和两个整数 val
和 depth
,在给定的深度 depth
处添加一个值为 val
的节点行。
注意,根节点 root
位于深度 1
。
加法规则如下:
- 给定整数
depth
,对于深度为depth - 1
的每个非空树节点cur
,创建两个值为val
的树节点作为cur
的左子树根和右子树根。 cur
原来的左子树应该是新的左子树根的左子树。cur
原来的右子树应该是新的右子树根的右子树。- 如果
depth == 1
意味着depth - 1
根本没有深度,那么创建一个树节点,值val
作为整个原始树的新根,而原始树就是新根的左子树。
示例 1:
输入: root = [4,2,6,3,1,5], val = 1, depth = 2 输出: [4,1,1,2,null,null,6,3,1,5]
示例 2:
输入: root = [4,2,null,3,1], val = 1, depth = 3 输出: [4,2,null,1,1,3,null,null,1]
提示:
- 节点数在
[1, 104]
范围内 - 树的深度在
[1, 104]
范围内 -100 <= Node.val <= 100
-105 <= val <= 105
1 <= depth <= the depth of tree + 1
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def addOneRow(self, root: TreeNode, val: int, depth: int) -> TreeNode:
def dfs(root, d):
if root is None:
return
if d == depth - 1:
l = TreeNode(val=val, left=root.left)
r = TreeNode(val=val, right=root.right)
root.left, root.right = l, r
return
dfs(root.left, d + 1)
dfs(root.right, d + 1)
if depth == 1:
return TreeNode(val=val, left=root)
dfs(root, 1)
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int val;
private int depth;
public TreeNode addOneRow(TreeNode root, int val, int depth) {
if (depth == 1) {
return new TreeNode(val, root, null);
}
this.val = val;
this.depth = depth;
dfs(root, 1);
return root;
}
private void dfs(TreeNode root, int d) {
if (root == null) {
return;
}
if (d == depth - 1) {
TreeNode l = new TreeNode(val, root.left, null);
TreeNode r = new TreeNode(val, null, root.right);
root.left = l;
root.right = r;
return;
}
dfs(root.left, d + 1);
dfs(root.right, d + 1);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int val;
int depth;
TreeNode* addOneRow(TreeNode* root, int val, int depth) {
if (depth == 1) return new TreeNode(val, root, nullptr);
this->val = val;
this->depth = depth;
dfs(root, 1);
return root;
}
void dfs(TreeNode* root, int d) {
if (!root) return;
if (d == depth - 1)
{
auto l = new TreeNode(val, root->left, nullptr);
auto r = new TreeNode(val, nullptr, root->right);
root->left = l;
root->right = r;
return;
}
dfs(root->left, d + 1);
dfs(root->right, d + 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func addOneRow(root *TreeNode, val int, depth int) *TreeNode {
if depth == 1 {
return &TreeNode{Val: val, Left: root}
}
var dfs func(root *TreeNode, d int)
dfs = func(root *TreeNode, d int) {
if root == nil {
return
}
if d == depth-1 {
l, r := &TreeNode{Val: val, Left: root.Left}, &TreeNode{Val: val, Right: root.Right}
root.Left, root.Right = l, r
return
}
dfs(root.Left, d+1)
dfs(root.Right, d+1)
}
dfs(root, 1)
return root
}