Skip to content

Latest commit

 

History

History

1649.Create Sorted Array through Instructions

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给你一个整数数组 instructions ,你需要根据 instructions 中的元素创建一个有序数组。一开始你有一个空的数组 nums ,你需要 从左到右 遍历 instructions 中的元素,将它们依次插入 nums 数组中。每一次插入操作的 代价 是以下两者的 较小值 :

  • nums 中 严格小于  instructions[i] 的数字数目。
  • nums 中 严格大于  instructions[i] 的数字数目。

比方说,如果要将 3 插入到 nums = [1,2,3,5] ,那么插入操作的 代价 为 min(2, 1) (元素 1 和  2 小于 3 ,元素 5 大于 3 ),插入后 nums 变成 [1,2,3,3,5] 。

请你返回将 instructions 中所有元素依次插入 nums 后的 总最小代价 。由于答案会很大,请将它对 109 + 7 取余 后返回。

 

示例 1:

输入:instructions = [1,5,6,2]
输出:1
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 5 ,代价为 min(1, 0) = 0 ,现在 nums = [1,5] 。
插入 6 ,代价为 min(2, 0) = 0 ,现在 nums = [1,5,6] 。
插入 2 ,代价为 min(1, 2) = 1 ,现在 nums = [1,2,5,6] 。
总代价为 0 + 0 + 0 + 1 = 1 。

示例 2:

输入:instructions = [1,2,3,6,5,4]
输出:3
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 2 ,代价为 min(1, 0) = 0 ,现在 nums = [1,2] 。
插入 3 ,代价为 min(2, 0) = 0 ,现在 nums = [1,2,3] 。
插入 6 ,代价为 min(3, 0) = 0 ,现在 nums = [1,2,3,6] 。
插入 5 ,代价为 min(3, 1) = 1 ,现在 nums = [1,2,3,5,6] 。
插入 4 ,代价为 min(3, 2) = 2 ,现在 nums = [1,2,3,4,5,6] 。
总代价为 0 + 0 + 0 + 0 + 1 + 2 = 3 。

示例 3:

输入:instructions = [1,3,3,3,2,4,2,1,2]
输出:4
解释:一开始 nums = [] 。
插入 1 ,代价为 min(0, 0) = 0 ,现在 nums = [1] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3,3] 。
插入 3 ,代价为 min(1, 0) = 0 ,现在 nums = [1,3,3,3] 。
插入 2 ,代价为 min(1, 3) = 1 ,现在 nums = [1,2,3,3,3] 。
插入 4 ,代价为 min(5, 0) = 0 ,现在 nums = [1,2,3,3,3,4] 。
​​​​​插入 2 ,代价为 min(1, 4) = 1 ,现在 nums = [1,2,2,3,3,3,4] 。
插入 1 ,代价为 min(0, 6) = 0 ,现在 nums = [1,1,2,2,3,3,3,4] 。
插入 2 ,代价为 min(2, 4) = 2 ,现在 nums = [1,1,2,2,2,3,3,3,4] 。
总代价为 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 2 = 4 。

 

提示:

  • 1 <= instructions.length <= 105
  • 1 <= instructions[i] <= 105

解法

方法一:树状数组

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 O(log n)

树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。

比如给定数组 a[5] = {2, 5, 3, 4, 1},求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数。对于此例,b[5] = {0, 1, 1, 2, 0}

解决方案是直接遍历数组,每个位置先求出 query(a[i]),然后再修改树状数组 update(a[i], 1) 即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。

方法二:线段树

线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 log(width)。更新某个元素的值,只需要更新 log(width) 个区间,并且这些区间都包含在一个包含该元素的大区间内。

  • 线段树的每个节点代表一个区间;
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如 [1, N]
  • 线段树的每个叶子节点代表一个长度为 1 的元区间 [x, x]
  • 对于每个内部节点 [l, r],它的左儿子是 [l, mid],右儿子是 [mid + 1, r], 其中 mid = ⌊(l + r) / 2⌋ (即向下取整)。

本题线段树 Python3 代码 TLE,Java、C++ 代码 AC。

Python3

树状数组:

class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    @staticmethod
    def lowbit(x):
        return x & -x

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += BinaryIndexedTree.lowbit(x)

    def query(self, x):
        s = 0
        while x > 0:
            s += self.c[x]
            x -= BinaryIndexedTree.lowbit(x)
        return s


class Solution:
    def createSortedArray(self, instructions: List[int]) -> int:
        n = max(instructions)
        tree = BinaryIndexedTree(n)
        ans = 0
        for num in instructions:
            a = tree.query(num - 1)
            b = tree.query(n) - tree.query(num)
            ans += min(a, b)
            tree.update(num, 1)
        return ans % int((1e9 + 7))

线段树:

class Node:
    def __init__(self):
        self.l = 0
        self.r = 0
        self.v = 0

class SegmentTree:
    def __init__(self, n):
        self.tr = [Node() for _ in range(4 * n)]
        self.build(1, 1, n)

    def build(self, u, l, r):
        self.tr[u].l = l
        self.tr[u].r = r
        if l == r:
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)

    def modify(self, u, x, v):
        if self.tr[u].l == x and self.tr[u].r == x:
            self.tr[u].v += v
            return
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if x <= mid:
            self.modify(u << 1, x, v)
        else:
            self.modify(u << 1 | 1, x, v)
        self.pushup(u)

    def pushup(self, u):
        self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].v
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        v = 0
        if l <= mid:
            v = self.query(u << 1, l, r)
        if r > mid:
            v += self.query(u << 1 | 1, l, r)
        return v

class Solution:
    def createSortedArray(self, instructions: List[int]) -> int:
        n = max(instructions)
        tree = SegmentTree(n)
        ans = 0
        for num in instructions:
            a = tree.query(1, 1, num - 1)
            b = tree.query(1, 1, n) - tree.query(1, 1, num)
            ans += min(a, b)
            tree.modify(1, num, 1)
        return ans % int((1e9 + 7))

Java

树状数组:

class Solution {
    public int createSortedArray(int[] instructions) {
        int n = 100010;
        int mod = (int) 1e9 + 7;
        BinaryIndexedTree tree = new BinaryIndexedTree(n);
        int ans = 0;
        for (int num : instructions) {
            int a = tree.query(num - 1);
            int b = tree.query(n) - tree.query(num);
            ans += Math.min(a, b);
            ans %= mod;
            tree.update(num, 1);
        }
        return ans;
    }
}

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    public static int lowbit(int x) {
        return x & -x;
    }
}

线段树:

class Solution {
    public int createSortedArray(int[] instructions) {
        int n = 100010;
        int mod = (int) 1e9 + 7;
        SegmentTree tree = new SegmentTree(n);
        int ans = 0;
        for (int num : instructions) {
            int a = tree.query(1, 1, num - 1);
            int b = tree.query(1, 1, n) - tree.query(1, 1, num);
            ans += Math.min(a, b);
            ans %= mod;
            tree.modify(1, num, 1);
        }
        return ans;
    }
}

class Node {
    int l;
    int r;
    int v;
}

class SegmentTree {
    private Node[] tr;

    public SegmentTree(int n) {
        tr = new Node[4 * n];
        for (int i = 0; i < tr.length; ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
    }

    public void build(int u, int l, int r) {
        tr[u].l = l;
        tr[u].r = r;
        if (l == r) {
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    public void modify(int u, int x, int v) {
        if (tr[u].l == x && tr[u].r == x) {
            tr[u].v += v;
            return;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        if (x <= mid) {
            modify(u << 1, x, v);
        } else {
            modify(u << 1 | 1, x, v);
        }
        pushup(u);
    }

    public void pushup(int u) {
        tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v;
    }

    public int query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            return tr[u].v;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        int v = 0;
        if (l <= mid) {
            v += query(u << 1, l, r);
        }
        if (r > mid) {
            v += query(u << 1 | 1, l, r);
        }
        return v;
    }
}

C++

树状数组:

class BinaryIndexedTree {
public:
    int n;
    vector<int> c;

    BinaryIndexedTree(int _n): n(_n), c(_n + 1){}

    void update(int x, int delta) {
        while (x <= n)
        {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    int query(int x) {
        int s = 0;
        while (x > 0)
        {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    int lowbit(int x) {
        return x & -x;
    }
};

class Solution {
public:
    int createSortedArray(vector<int>& instructions) {
        int n = 100010;
        int mod = 1e9 + 7;
        BinaryIndexedTree* tree = new BinaryIndexedTree(n);
        int ans = 0;
        for (int num : instructions)
        {
            int a = tree->query(num - 1);
            int b = tree->query(n) - tree->query(num);
            ans += min(a, b);
            ans %= mod;
            tree->update(num, 1);
        }
        return ans;
    }
};

线段树:

class Node {
public:
    int l;
    int r;
    int v;
};

class SegmentTree {
public:
    vector<Node*> tr;

    SegmentTree(int n) {
        tr.resize(4 * n);
        for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
        build(1, 1, n);
    }

    void build(int u, int l, int r) {
        tr[u]->l = l;
        tr[u]->r = r;
        if (l == r) return;
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    void modify(int u, int x, int v) {
        if (tr[u]->l == x && tr[u]->r == x)
        {
            tr[u]->v += v;
            return;
        }
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        if (x <= mid) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }

    void pushup(int u) {
        tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v;
    }

    int query(int u, int l, int r) {
        if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        int v = 0;
        if (l <= mid) v = query(u << 1, l, r);
        if (r > mid) v += query(u << 1 | 1, l, r);
        return v;
    }
};

class Solution {
public:
    int createSortedArray(vector<int>& instructions) {
        int n = *max_element(instructions.begin(), instructions.end());
        int mod = 1e9 + 7;
        SegmentTree* tree = new SegmentTree(n);
        int ans = 0;
        for (int num : instructions)
        {
            int a = tree->query(1, 1, num - 1);
            int b = tree->query(1, 1, n) - tree->query(1, 1, num);
            ans += min(a, b);
            ans %= mod;
            tree->modify(1, num, 1);
        }
        return ans;
    }
};

Go

树状数组:

type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	c := make([]int, n+1)
	return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
	return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
	for x <= this.n {
		this.c[x] += delta
		x += this.lowbit(x)
	}
}

func (this *BinaryIndexedTree) query(x int) int {
	s := 0
	for x > 0 {
		s += this.c[x]
		x -= this.lowbit(x)
	}
	return s
}

func createSortedArray(instructions []int) int {
	n := 100010
	mod := int(1e9 + 7)
	tree := newBinaryIndexedTree(n)
	ans := 0
	for _, num := range instructions {
		a, b := tree.query(num-1), tree.query(n)-tree.query(num)
		ans += min(a, b)
		ans %= mod
		tree.update(num, 1)
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...