forked from LIVIAETS/boxes_tightness_prior
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_weak.py
268 lines (210 loc) · 9.69 KB
/
gen_weak.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python3
import random
import argparse
from typing import Callable, List, Tuple
from pathlib import Path
from pprint import pprint
from argparse import Namespace
from functools import partial
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy import ndimage
from skimage import measure
from PIL import Image, ImageDraw
from utils import mmap_, map_
def centroid_strat(orig_mask: np.ndarray, filename: str, filling: int) -> Tuple[np.ndarray, int]:
assert set(np.unique(orig_mask)).issubset({False, True})
size: int = orig_mask.sum()
if size: # Positive images
res_img: Image.Image = Image.new("L", orig_mask.shape, 0)
canvas = ImageDraw.Draw(res_img)
centroid: Tuple[float, float] = ndimage.measurements.center_of_mass(orig_mask)
# Of course the coordinates are inverted
cx, cy = int(centroid[0]), int(centroid[1])
cx, cy = cy, cx
if args.verbose:
print(centroid, cx, cy)
width: int = args.width
dw: int = int(width / 2)
rx: int
ry: int
if args.r > 0:
rx, ry = random.randrange(-args.r, args.r), random.randrange(-args.r, args.r)
else:
rx, ry = 0, 0
canvas.ellipse([cx - dw + rx, cy - dw + ry, cx + dw + rx, cy + dw + ry], fill=filling)
# Remove overflow if needed
masked_res: Image.Image = Image.fromarray(np.einsum("hw,wh->wh", np.array(res_img), orig_mask), mode='L')
# Sanity check: we do not want the label to go over the border
result_mask = np.array(masked_res) == filling
inter: np.ndarray = orig_mask & result_mask # should be > 1
if inter.sum() < 1: # I assume this case appears only for images that are too small and r too big
# So it makes sense to use the orignal segmentation as ground truth
if not args.quiet:
print(f"No overlap, using orignal mask {filename}")
masked_res = Image.fromarray(orig_mask.astype(np.uint8), mode='L')
else:
masked_res = Image.fromarray(orig_mask.astype(np.uint8), mode='L')
return masked_res, size
def erosion_strat(orig_mask: np.ndarray, filename: str, filling: int) -> Tuple[np.ndarray, int]:
res_img: Image.Image = Image.new("L", orig_mask.shape, 0)
size: int = orig_mask.sum()
if size: # Positive images
struct2 = ndimage.generate_binary_structure(2, 3)
# print(struct2.shape, orig_mask.shape)
gt_eroded = orig_mask[...]
iter = args.max_iter
while True: # do while du pauvre
if iter == 0:
gt_eroded = orig_mask[...]
if not args.quiet:
print(f"Using orignal structure for {filename} (size {orig_mask.sum()})")
# plt.imshow(gt_eroded)
# plt.show()
break
gt_eroded = ndimage.binary_erosion(orig_mask, structure=struct2, iterations=iter).astype(orig_mask.dtype)
if gt_eroded.sum() > 0:
break
iter -= 1
res = gt_eroded.astype(np.uint8)
res[res == 1] = filling
res_img = Image.fromarray(res, mode="L")
return res_img, size
def random_strat(orig_mask: np.ndarray, filename: str, filling: int) -> Tuple[np.ndarray, int]:
res_img: Image.Image = Image.new("L", orig_mask.shape, 0)
size: int = orig_mask.sum()
if size: # Positive images
canvas = ImageDraw.Draw(res_img)
xs, ys = np.where(orig_mask == 1)
# print(len(xs), len(ys))
assert len(xs) == len(ys)
random_index: int = np.random.randint(len(xs))
rx, ry = xs[random_index], ys[random_index]
# Of course the coordinates are inverted
# rx, ry = ry, rx
# print(centroid, rx, ry)
width: int = args.width
dw: int = int(width // 2)
canvas.ellipse([rx - dw, ry - dw, rx + dw, ry + dw], fill=filling)
# Remove overflow if needed
masked_res: Image.Image = Image.fromarray((np.einsum("hw,wh->wh", np.array(res_img), orig_mask)).astype(np.uint8),
mode='L')
res_img = masked_res
return res_img, size
def box_strat(orig_mask: np.ndarray, filename: str, filling: int) -> Tuple[np.ndarray, int]:
orig_arr: np.ndarray = np.array(orig_mask, dtype=np.uint8)
res_arr: np.ndarray = np.zeros_like(orig_arr)
assert orig_arr.dtype == res_arr.dtype
margin: int = args.margin
size: int = orig_mask.sum()
if size: # Positive images
coords = np.argwhere(orig_arr)
x1, y1 = np.maximum(coords - margin, 0).min(axis=0)
x2, y2 = np.minimum(coords + margin, orig_arr.shape).max(axis=0)
res_arr[x1:x2 + 1, y1:y2 + 1] = filling
res = Image.fromarray(res_arr, mode='L')
return res, size
def weaken_img(pn: Tuple, strategy: Callable) -> Tuple[int, int]:
# print(f"Processing {n}")
p: str
n: str
p, n = pn
img: Image.Image = Image.open(p)
try:
assert set(np.unique(img)).issubset({0, 1, 2, 3})
except AssertionError:
print(np.unique(img))
raise
if args.verbose:
plt.imshow(img)
plt.show()
selected_class: int = args.selected_class
filling: int = args.filling
ni: np.ndarray = np.array(img) == selected_class # Keep only background and LV, as booleans
assert set(np.unique(ni)).issubset({False, True})
# Do the magic
if args.per_connected_components:
blobs: np.ndarray
n_blob: int
blobs, n_blob = measure.label(ni, background=0, return_num=True)
assert set(np.unique(blobs)) == set(range(n_blob + 1)), np.unique(blobs)
_res_arr: np.ndarray = np.zeros_like(ni, dtype=np.uint8)
for id_blob in range(1, n_blob + 1):
masked_blob: np.ndarray = blobs == id_blob
partial_res_img, partial_size = strategy(masked_blob, n, filling)
_res_arr |= np.array(partial_res_img) == filling
res_img = Image.fromarray(_res_arr * filling, mode='L')
size = (_res_arr == filling).astype(np.int64).sum() # Should improve later ; quite ugly
else:
res_img, size = strategy(ni, n, filling)
# Final checks, we do not want the label to go over the border
res_arr: np.ndarray = np.array(res_img)
rb = np.array(res_arr) == filling
inter: np.ndarray = ni & rb
inter_neg: np.ndarray = (~ni) & rb
try:
assert res_arr.shape == ni.shape, (res_arr.shape, ni.shape)
assert set(np.unique(rb)).issubset({False, True}), np.unique(rb)
assert set(np.unique(res_arr)).issubset({0, filling}), np.unique(res_arr)
assert rb.sum() <= ni.sum() or args.allow_bigger, (rb.sum(), ni.sum())
assert inter_neg.sum() == 0 or args.allow_overflow, inter_neg.sum() # No overflow over the border
assert inter.sum() > 0 or size == 0, (inter.sum(), size == 0) # At least some overlap
except AssertionError:
# print(res_arr.shape, ni.shape)
# print(np.unique(rb), np.unique(res_arr))
# print(rb.sum(), ni.sum())
# print(inter_neg.sum())
# print(inter.sum())
_, axes = plt.subplots(nrows=1, ncols=2)
for axe, fig in zip(axes, [np.array(img), res_arr]):
axe.imshow(fig)
plt.show()
raise
save_path = Path(args.base_folder, args.save_subfolder, n)
save_path.parent.mkdir(parents=True, exist_ok=True)
res_img.save(save_path)
return size, res_arr.sum()
def main(args: Namespace) -> None:
inputs: List[Path] = list(Path(args.base_folder, args.GT_subfolder).glob(args.regex))
names: List[str] = [p.name for p in inputs]
print(f"Found {len(names)} images to weaken")
if args.verbose:
pprint(names[:10])
strategy: Callable = eval(args.strategy)
strat: Callable = partial(weaken_img, strategy=strategy)
# sizes: np.ndarray = np.zeros(len(inputs), dtype=np.uint32)
# for i, (pn) in tqdm(enumerate(zip(inputs, names)), ncols=100, total=len(names)):
# sizes[i] = strat(pn)
orig_sizes, new_sizes = map_(np.asarray, zip(*mmap_(strat, zip(inputs, names))))
assert len(orig_sizes) == len(new_sizes) == len(names)
print("Orig sizes: (min, mean, max)", orig_sizes[orig_sizes > 0].min(), orig_sizes.mean(), orig_sizes.max())
print(f"Annotated {new_sizes.sum()} pixels for {len(new_sizes)} images")
def get_args() -> Namespace:
parser = argparse.ArgumentParser(description='Dataset params')
parser.add_argument("--base_folder", type=str, required=True)
parser.add_argument("--save_subfolder", type=str, required=True)
parser.add_argument("--seed", type=int, required=True)
parser.add_argument("--strategy", type=str, required=True)
parser.add_argument("--selected_class", type=int, required=True,
help="Default used to be 3")
parser.add_argument("--filling", type=int, required=True,
help="Default used to be 3")
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--allow_bigger", action="store_true")
parser.add_argument("--allow_overflow", action="store_true")
parser.add_argument("--per_connected_components", action="store_true")
parser.add_argument("--GT_subfolder", default='gt', type=str)
parser.add_argument("--regex", type=str, default="*.png")
parser.add_argument("--r", type=int, default=0)
parser.add_argument("--width", type=int, default=0)
parser.add_argument("--margin", type=int, default=0)
parser.add_argument("--max_iter", type=int, default=10)
args = parser.parse_args()
print(args)
return args
if __name__ == "__main__":
args: Namespace = get_args()
random.seed(args.seed)
main(args)