forked from santi-pdp/segan_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
258 lines (247 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from segan.models import SEGAN, WSEGAN, AEWSEGAN
from segan.datasets import SEDataset, SEH5Dataset, collate_fn
from segan.utils import Additive
import numpy as np
import random
import json
import os
def main(opts):
# select device to work on
device = 'cpu'
if torch.cuda.is_available and not opts.no_cuda:
device = 'cuda'
opts.cuda = True
CUDA = (device == 'cuda')
# seed initialization
random.seed(opts.seed)
np.random.seed(opts.seed)
torch.manual_seed(opts.seed)
if CUDA:
torch.cuda.manual_seed_all(opts.seed)
# create SEGAN model
if opts.wsegan:
segan = WSEGAN(opts)
elif opts.aewsegan:
segan = AEWSEGAN(opts)
else:
segan = SEGAN(opts)
segan.to(device)
# possibly load pre-trained sections of networks G or D
print('Total model parameters: ', segan.get_n_params())
if opts.g_pretrained_ckpt is not None:
segan.G.load_pretrained(opts.g_pretrained_ckpt, True)
if opts.d_pretrained_ckpt is not None:
segan.D.load_pretrained(opts.d_pretrained_ckpt, True)
# create Dataset(s) and Dataloader(s)
if opts.h5:
# H5 Dataset with processed speech chunks
if opts.h5_data_root is None:
raise ValueError('Please specify an H5 data root')
dset = SEH5Dataset(opts.h5_data_root, split='train',
preemph=opts.preemph,
verbose=True,
random_scale=opts.random_scale)
else:
# Directory Dataset from raw wav files
dset = SEDataset(opts.clean_trainset,
opts.noisy_trainset,
opts.preemph,
do_cache=True,
cache_dir=opts.cache_dir,
split='train',
stride=opts.data_stride,
slice_size=opts.slice_size,
max_samples=opts.max_samples,
verbose=True,
slice_workers=opts.slice_workers,
preemph_norm=opts.preemph_norm,
random_scale=opts.random_scale
)
dloader = DataLoader(dset, batch_size=opts.batch_size,
shuffle=True, num_workers=opts.num_workers,
pin_memory=CUDA,
collate_fn=collate_fn)
if opts.clean_valset is not None:
if opts.h5:
dset = SEH5Dataset(opts.h5_data_root, split='valid',
preemph=opts.preemph,
verbose=True)
else:
va_dset = SEDataset(opts.clean_valset,
opts.noisy_valset,
opts.preemph,
do_cache=True,
cache_dir=opts.cache_dir,
split='valid',
stride=opts.data_stride,
slice_size=opts.slice_size,
max_samples=opts.max_samples,
verbose=True,
slice_workers=opts.slice_workers,
preemph_norm=opts.preemph_norm)
va_dloader = DataLoader(va_dset, batch_size=300,
shuffle=False, num_workers=opts.num_workers,
pin_memory=CUDA,
collate_fn=collate_fn)
else:
va_dloader = None
criterion = nn.MSELoss()
segan.train(opts, dloader, criterion, opts.l1_weight,
opts.l1_dec_step, opts.l1_dec_epoch,
opts.save_freq,
va_dloader=va_dloader, device=device)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--save_path', type=str, default="seganv1_ckpt",
help="Path to save models (Def: seganv1_ckpt).")
parser.add_argument('--d_pretrained_ckpt', type=str, default=None,
help='Path to ckpt file to pre-load in training '
'(Def: None).')
parser.add_argument('--g_pretrained_ckpt', type=str, default=None,
help='Path to ckpt file to pre-load in training '
'(Def: None).')
parser.add_argument('--cache_dir', type=str, default='data_cache')
parser.add_argument('--clean_trainset', type=str,
default='data/clean_trainset')
parser.add_argument('--noisy_trainset', type=str,
default='data/noisy_trainset')
parser.add_argument('--clean_valset', type=str,
default=None)#'data/clean_valset')
parser.add_argument('--noisy_valset', type=str,
default=None)#'data/noisy_valset')
parser.add_argument('--h5_data_root', type=str, default=None,
help='H5 data root dir (Def: None). The '
'files will be found by split name '
'{train, valid, test}.h5')
parser.add_argument('--h5', action='store_true', default=False,
help='Activate H5 dataset mode (Def: False).')
parser.add_argument('--data_stride', type=float,
default=0.5, help='Stride in seconds for data read')
parser.add_argument('--seed', type=int, default=111,
help="Random seed (Def: 111).")
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--patience', type=int, default=100,
help='If validation path is set, there are '
'denoising evaluations running for which '
'COVL, CSIG, CBAK, PESQ and SSNR are '
'computed. Patience is number of validation '
'epochs to wait til breakining train loop. This '
'is an unstable and slow process though, so we'
'avoid patience by setting it high atm (Def: 100).'
)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--save_freq', type=int, default=50,
help="Batch save freq (Def: 50).")
parser.add_argument('--slice_size', type=int, default=16384)
parser.add_argument('--opt', type=str, default='rmsprop')
parser.add_argument('--l1_dec_epoch', type=int, default=100)
parser.add_argument('--l1_weight', type=float, default=100,
help='L1 regularization weight (Def. 100). ')
parser.add_argument('--l1_dec_step', type=float, default=1e-5,
help='L1 regularization decay factor by batch ' \
'(Def: 1e-5).')
parser.add_argument('--g_lr', type=float, default=0.00005,
help='Generator learning rate (Def: 0.00005).')
parser.add_argument('--d_lr', type=float, default=0.00005,
help='Discriminator learning rate (Def: 0.0005).')
parser.add_argument('--preemph', type=float, default=0.95,
help='Wav preemphasis factor (Def: 0.95).')
parser.add_argument('--max_samples', type=int, default=None,
help='Max num of samples to train (Def: None).')
parser.add_argument('--eval_workers', type=int, default=2)
parser.add_argument('--slice_workers', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=1,
help='DataLoader number of workers (Def: 1).')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disable CUDA even if device is available')
parser.add_argument('--random_scale', type=float, nargs='+',
default=[1], help='Apply randomly a scaling factor' \
'in list to the (clean, noisy) pair')
parser.add_argument('--no_train_gen', action='store_true', default=False,
help='Do NOT generate wav samples during training')
parser.add_argument('--preemph_norm', action='store_true', default=False,
help='Inverts old norm + preemph order in data ' \
'loading, so denorm has to respect this aswell')
parser.add_argument('--wsegan', action='store_true', default=False)
parser.add_argument('--aewsegan', action='store_true', default=False)
parser.add_argument('--vanilla_gan', action='store_true', default=False)
parser.add_argument('--no_bias', action='store_true', default=False,
help='Disable all biases in Generator')
parser.add_argument('--n_fft', type=int, default=2048)
parser.add_argument('--reg_loss', type=str, default='l1_loss'm
help='Regression loss (l1_loss or mse_loss) in the '
'output of G (Def: l1_loss)')
# Skip connections options for G
parser.add_argument('--skip_merge', type=str, default='concat')
parser.add_argument('--skip_type', type=str, default='alpha',
help='Type of skip connection: \n' \
'1) alpha: learn a vector of channels to ' \
' multiply elementwise. \n' \
'2) conv: learn conv kernels of size 11 to ' \
' learn complex responses in the shuttle.\n' \
'3) constant: with alpha value, set values to' \
' not learnable, just fixed.\n(Def: alpha)')
parser.add_argument('--skip_init', type=str, default='one',
help='Way to init skip connections (Def: one)')
parser.add_argument('--skip_kwidth', type=int, default=11)
# Generator parameters
parser.add_argument('--gkwidth', type=int, default=31)
parser.add_argument('--genc_fmaps', type=int, nargs='+',
default=[64, 128, 256, 512, 1024],
help='Number of G encoder feature maps, ' \
'(Def: [64, 128, 256, 512, 1024]).')
parser.add_argument('--genc_poolings', type=int, nargs='+',
default=[4, 4, 4, 4, 4],
help='G encoder poolings')
parser.add_argument('--z_dim', type=int, default=1024)
parser.add_argument('--gdec_fmaps', type=int, nargs='+',
default=None)
parser.add_argument('--gdec_poolings', type=int, nargs='+',
default=None,
help='Optional dec poolings. Defaults to None '
'so that encoder poolings are mirrored.')
parser.add_argument('--gdec_kwidth', type=int,
default=None)
parser.add_argument('--gnorm_type', type=str, default=None,
help='Normalization to be used in G. Can '
'be: (1) snorm, (2) bnorm or (3) none '
'(Def: None).')
parser.add_argument('--no_z', action='store_true', default=False)
parser.add_argument('--no_skip', action='store_true', default=False)
parser.add_argument('--pow_weight', type=float, default=0.001)
parser.add_argument('--misalign_pair', action='store_true', default=False)
parser.add_argument('--interf_pair', action='store_true', default=False)
# Discriminator parameters
parser.add_argument('--denc_fmaps', type=int, nargs='+',
default=[64, 128, 256, 512, 1024],
help='Number of D encoder feature maps, ' \
'(Def: [64, 128, 256, 512, 1024]')
parser.add_argument('--dpool_type', type=str, default='none',
help='conv/none/gmax/gavg (Def: none)')
parser.add_argument('--dpool_slen', type=int, default=16,
help='Dimension of last conv D layer time axis'
'prior to classifier real/fake (Def: 16)')
parser.add_argument('--dkwidth', type=int, default=None,
help='Disc kwidth (Def: None), None is gkwidth.')
parser.add_argument('--denc_poolings', type=int, nargs='+',
default=[4, 4, 4, 4, 4],
help='(Def: [4, 4, 4, 4, 4])')
parser.add_argument('--dnorm_type', type=str, default='bnorm',
help='Normalization to be used in D. Can '
'be: (1) snorm, (2) bnorm or (3) none '
'(Def: bnorm).')
parser.add_argument('--phase_shift', type=int, default=5)
parser.add_argument('--sinc_conv', action='store_true', default=False)
opts = parser.parse_args()
opts.bias = not opts.no_bias
if not os.path.exists(opts.save_path):
os.makedirs(opts.save_path)
# save opts
with open(os.path.join(opts.save_path, 'train.opts'), 'w') as cfg_f:
cfg_f.write(json.dumps(vars(opts), indent=2))
print('Parsed arguments: ', json.dumps(vars(opts), indent=2))
main(opts)