forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel.py
162 lines (142 loc) · 5.71 KB
/
parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""Parallel util function."""
# Author: Alexandre Gramfort <[email protected]>
#
# License: Simplified BSD
from .externals.six import string_types
import logging
import os
from . import get_config
from .utils import logger, verbose, warn, ProgressBar
from .fixes import _get_args
if 'MNE_FORCE_SERIAL' in os.environ:
_force_serial = True
else:
_force_serial = None
@verbose
def parallel_func(func, n_jobs, max_nbytes='auto', pre_dispatch='2 * n_jobs',
total=None, verbose=None):
"""Return parallel instance with delayed function.
Util function to use joblib only if available
Parameters
----------
func: callable
A function
n_jobs: int
Number of jobs to run in parallel
max_nbytes : int, str, or None
Threshold on the minimum size of arrays passed to the workers that
triggers automated memory mapping. Can be an int in Bytes,
or a human-readable string, e.g., '1M' for 1 megabyte.
Use None to disable memmaping of large arrays. Use 'auto' to
use the value set using mne.set_memmap_min_size.
pre_dispatch : int, or string, optional
See :class:`joblib.Parallel`.
total : int | None
If int, use a progress bar to display the progress of dispatched
jobs. This should only be used when directly iterating, not when
using ``split_list`` or :func:`np.array_split`.
If None (default), do not add a progress bar.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). INFO or DEBUG
will print parallel status, others will not.
Returns
-------
parallel: instance of joblib.Parallel or list
The parallel object
my_func: callable
func if not parallel or delayed(func)
n_jobs: int
Number of jobs >= 0
"""
should_print = (logger.level <= logging.INFO)
# for a single job, we don't need joblib
if n_jobs != 1:
try:
from joblib import Parallel, delayed
except ImportError:
try:
from sklearn.externals.joblib import Parallel, delayed
except ImportError:
warn('joblib not installed. Cannot run in parallel.')
n_jobs = 1
if n_jobs == 1:
n_jobs = 1
my_func = func
parallel = list
else:
# check if joblib is recent enough to support memmaping
p_args = _get_args(Parallel.__init__)
joblib_mmap = ('temp_folder' in p_args and 'max_nbytes' in p_args)
cache_dir = get_config('MNE_CACHE_DIR', None)
if isinstance(max_nbytes, string_types) and max_nbytes == 'auto':
max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None)
if max_nbytes is not None:
if not joblib_mmap and cache_dir is not None:
warn('"MNE_CACHE_DIR" is set but a newer version of joblib is '
'needed to use the memmapping pool.')
if joblib_mmap and cache_dir is None:
logger.info(
'joblib supports memapping pool but "MNE_CACHE_DIR" '
'is not set in MNE-Python config. To enable it, use, '
'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will '
'store temporary files under /dev/shm and can result '
'in large memory savings.')
# create keyword arguments for Parallel
kwargs = {'verbose': 5 if should_print and total is None else 0}
kwargs['pre_dispatch'] = pre_dispatch
if joblib_mmap:
if cache_dir is None:
max_nbytes = None # disable memmaping
kwargs['temp_folder'] = cache_dir
kwargs['max_nbytes'] = max_nbytes
n_jobs = check_n_jobs(n_jobs)
parallel = Parallel(n_jobs, **kwargs)
my_func = delayed(func)
if total is not None:
def parallel_progress(op_iter):
pb = ProgressBar(total, verbose_bool=should_print)
return parallel(pb(op_iter))
parallel_out = parallel_progress
else:
parallel_out = parallel
return parallel_out, my_func, n_jobs
def check_n_jobs(n_jobs, allow_cuda=False):
"""Check n_jobs in particular for negative values.
Parameters
----------
n_jobs : int
The number of jobs.
allow_cuda : bool
Allow n_jobs to be 'cuda'. Default: False.
Returns
-------
n_jobs : int
The checked number of jobs. Always positive (or 'cuda' if
applicable.)
"""
if not isinstance(n_jobs, int):
if not allow_cuda:
raise ValueError('n_jobs must be an integer')
elif not isinstance(n_jobs, string_types) or n_jobs != 'cuda':
raise ValueError('n_jobs must be an integer, or "cuda"')
# else, we have n_jobs='cuda' and this is okay, so do nothing
elif _force_serial:
n_jobs = 1
logger.info('... MNE_FORCE_SERIAL set. Processing in forced '
'serial mode.')
elif n_jobs <= 0:
try:
import multiprocessing
n_cores = multiprocessing.cpu_count()
n_jobs = min(n_cores + n_jobs + 1, n_cores)
if n_jobs <= 0:
raise ValueError('If n_jobs has a negative value it must not '
'be less than the number of CPUs present. '
'You\'ve got %s CPUs' % n_cores)
except ImportError:
# only warn if they tried to use something other than 1 job
if n_jobs != 1:
warn('multiprocessing not installed. Cannot run in parallel.')
n_jobs = 1
return n_jobs