-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_genre.py
95 lines (79 loc) · 3.47 KB
/
gen_genre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
import os
import sys
import random
import zipfile
from multiprocessing import Pool, Manager
import preprocess as preprocess
import json
from sklearn.model_selection import StratifiedKFold
subset = input('subset: ')
raw_data_dir = subset + '_data_raw'
if os.path.exists(raw_data_dir):
print('Output path {} already exists!'.format(raw_data_dir))
sys.exit(0)
data_path = input('LMD dataset zip path: ')
n_folds = 5
n_times = 4 # sample train set multiple times
max_length = int(input('sequence length: '))
preprocess.sample_len_max = max_length
preprocess.deduplicate = False
preprocess.data_zip = zipfile.ZipFile(data_path)
fold_map = dict()
manager = Manager()
all_data = manager.list()
pool_num = 24
labels = dict()
with open('midi_genre_map.json') as f:
for s in json.load(f)[subset].items():
labels[s[0]] = tuple(
sorted(set(i.strip().replace(' ', '-') for i in s[1])))
def get_id(file_name):
return file_name.split('/')[-1].split('.')[0]
def get_fold(file_name):
return fold_map[get_id(file_name)]
def get_sample(output_str_list):
max_len = max(len(s.split()) for s in output_str_list)
return random.choice([s for s in output_str_list if len(s.split()) == max_len])
def new_writer(file_name, output_str_list):
if len(output_str_list) > 0:
all_data.append((file_name, tuple(get_sample(output_str_list)
for _ in range(n_times))))
preprocess.writer = new_writer
os.system('mkdir -p {}'.format(raw_data_dir))
file_list = [file_name for file_name in preprocess.data_zip.namelist(
) if file_name[-4:].lower() == '.mid' or file_name[-5:].lower() == '.midi']
file_list = [file_name for file_name in file_list if get_id(
file_name) in labels]
random.shuffle(file_list)
label_list = ['+'.join(labels[get_id(file_name)]) for file_name in file_list]
fold_index = 0
for train_index, test_index in StratifiedKFold(n_folds).split(file_list, label_list):
for i in test_index:
fold_map[get_id(file_list[i])] = fold_index
fold_index += 1
with Pool(pool_num) as p:
list(p.imap_unordered(preprocess.G, file_list))
random.shuffle(all_data)
print('{}/{} ({:.2f}%)'.format(len(all_data),
len(file_list), len(all_data) / len(file_list) * 100))
for fold in range(n_folds):
os.system('mkdir -p {}/{}'.format(raw_data_dir, fold))
preprocess.gen_dictionary('{}/{}/dict.txt'.format(raw_data_dir, fold))
for cur_split in ['train', 'test']:
output_path_prefix = '{}/{}/{}'.format(raw_data_dir, fold, cur_split)
with open(output_path_prefix + '.txt', 'w') as f_txt:
with open(output_path_prefix + '.label', 'w') as f_label:
with open(output_path_prefix + '.id', 'w') as f_id:
count = 0
for file_name, output_str_list in all_data:
if (cur_split == 'train' and fold != get_fold(file_name)) or (cur_split == 'test' and fold == get_fold(file_name)):
for i in range(n_times if cur_split == 'train' else 1):
f_txt.write(output_str_list[i] + '\n')
f_label.write(
' '.join(labels[get_id(file_name)]) + '\n')
f_id.write(get_id(file_name) + '\n')
count += 1
print(fold, cur_split, count)