-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_nsp.py
94 lines (93 loc) · 5 KB
/
gen_nsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
import os
import sys
import pickle
import preprocess as preprocess
import random
# (Measure, Pos, Program, Pitch, Duration, Velocity, TimeSig, Tempo)
samples_size = 0 # set to 0 for full generation
velocity_list = [8, 20, 31, 42, 53, 64, 80, 96, 112, 127]
timesig = preprocess.t2e((4, 4))
tempo = preprocess.b2e(120.0)
source_pos_resolution = 32
pos_scale = source_pos_resolution // preprocess.pos_resolution
chord = pickle.load(open('chord_mapping.pkl', 'rb'))
task = input('task = ')
assert task in ['next', 'acc']
input_file_dir = 'PiRhDy/dataset/context_{}'.format(task)
output_file_dir = '{}_data_raw'.format(task)
if os.path.exists(output_file_dir):
print('Output path {} already exists!'.format(output_file_dir))
sys.exit(0)
os.system('mkdir -p {}'.format(output_file_dir))
preprocess.gen_dictionary('{}/dict.txt'.format(output_file_dir))
cnt = 0
samples = []
if samples_size > 0:
with open(input_file_dir + '/' + 'train') as f_input:
num_lines = sum(1 for line in f_input if len(line.strip()) > 0)
samples = random.sample(range(num_lines // 2), k=(samples_size * 2))
for split in ['train', 'test']:
samples_split = set(samples[:samples_size] if split ==
'train' else samples[samples_size:])
with open(input_file_dir + '/' + ('train' if samples_size > 0 else split)) as f_input:
with open(output_file_dir + '/' + split + '.txt', 'w') as f_txt:
with open(output_file_dir + '/' + split + '.label', 'w') as f_label:
idx = 0
for file_line in f_input:
if samples_size > 0:
if (idx // 2) not in samples_split:
idx += 1
continue
else:
idx += 1
else:
idx += 1
# (pair_id, feature_id, note_id)
# [pair0 pitch] + [pair0 ocatave] + [pair0 vel] + [pair0 state] + [pair1 pitch] + [pair1 ocatave] + [pair1 vel] + [pair1 state]
data_item = list(map(int, file_line.strip().split(',')))
tokens_per_note = 4
first_length = sum(
_ > 0 for _ in data_item[:source_pos_resolution * tokens_per_note])
encoding = []
for pair_id in range(2):
for note_id in range(source_pos_resolution * tokens_per_note):
note = [
data_item[((pair_id * tokens_per_note + _) * source_pos_resolution * tokens_per_note) + note_id] for _ in range(tokens_per_note)]
pitch_class, octave, velocity, note_state = note
state_on = 3
state_hold = 2
state_off = 1
state_rest = 0
if ((note_id == 0 and note_state == state_hold
) or note_state == state_on) and pitch_class in chord:
pos = (note_id if task == 'acc' or pair_id ==
0 else first_length + note_id) * pos_scale
measure = pos // (preprocess.pos_resolution *
preprocess.beat_note_factor)
pos = pos % (
preprocess.pos_resolution * preprocess.beat_note_factor)
velocity = preprocess.v2e(
velocity_list[velocity - 1])
k = note_id + 1
state_idx = 3
# find next note/rest
while k < source_pos_resolution * tokens_per_note and data_item[((pair_id * tokens_per_note + state_idx) * source_pos_resolution * tokens_per_note) + k] in [state_off, state_hold]:
k += 1
duration = preprocess.d2e(
(k - note_id) * pos_scale)
s = chord[pitch_class] if type(
chord[pitch_class]) == set else set(range(12))
program = 0 if task == 'acc' and pair_id > 0 else 80
for c in s:
pitch = c + ((octave - 1) * 12)
encoding.append(
(measure, pos, program, pitch, duration, velocity, timesig, tempo))
encoding = list(sorted(encoding))
print(preprocess.encoding_to_str(encoding), file=f_txt)
print(data_item[-1], file=f_label) # 1=True 0=False
cnt += 1
if cnt % 1000 == 0:
print(split, cnt, idx)