-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·512 lines (388 loc) · 19.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import builtins
import logging
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import numpy as np
from model.utils import get_model
from training.dataset.utils import get_dataset
from torch.utils import data
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from training.utils import update_ema_variables
from training.losses import BinaryDiceLoss, BinaryCrossEntropyLoss
from training.validation import validation_ddp_with_large_images as validation
from training.utils import (
exp_lr_scheduler_with_warmup,
log_evaluation_result,
log_overall_result,
get_optimizer,
unwrap_model_checkpoint,
)
import yaml
import argparse
import time
import math
import sys
import pdb
import warnings
import copy
from utils import (
configure_logger,
save_configure,
is_master,
AverageMeter,
ProgressMeter,
resume_load_optimizer_checkpoint,
resume_load_model_checkpoint,
)
warnings.filterwarnings("ignore", category=UserWarning)
def train_net(net, trainset, valset_list, testset_list, args, ema_net=None):
########################################################################################
# Dataset Creation
samples_weight = torch.from_numpy(np.array(trainset.weight_list))
train_sampler = torch.utils.data.WeightedRandomSampler(samples_weight, len(samples_weight)*10)
trainLoader = data.DataLoader(
trainset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
sampler=train_sampler,
pin_memory=(args.aug_device != 'gpu'),
num_workers=args.num_workers,
persistent_workers=(args.num_workers>0),
)
valLoader_list = []
for i in range(len(args.dataset_name_list)):
dataset_name = args.dataset_name_list[i]
valset = valset_list[i]
val_sampler = DistributedSampler(valset) if args.distributed else None
valLoader = data.DataLoader(
valset,
batch_size=1, # has to be 1 sample per gpu, as the input size of 3D input is different
shuffle=False,
sampler=val_sampler,
pin_memory=True,
num_workers=0
)
valLoader_list.append(valLoader)
testLoader_list = []
for i in range(len(args.dataset_name_list)):
dataset_name = args.dataset_name_list[i]
testset = testset_list[i]
test_sampler = DistributedSampler(testset) if args.distributed else None
testLoader = data.DataLoader(
testset,
batch_size=1, # has to be 1 sample per gpu, as the input size of 3D input is different
shuffle=False,
sampler=test_sampler,
pin_memory=True,
num_workers=0
)
testLoader_list.append(testLoader)
logging.info(f"Created Dataset and DataLoader")
########################################################################################
# Initialize tensorboard, optimizer, amp scaler and etc.
writer = SummaryWriter(os.path.join(f"{args.log_path}", f"{args.unique_name}")) if is_master(args) else None
optimizer = get_optimizer(args, net)
if args.resume:
resume_load_optimizer_checkpoint(optimizer, args)
criterion_ce = BinaryCrossEntropyLoss(class_num=args.tn).cuda(args.proc_idx)
criterion_dl = BinaryDiceLoss(class_num=args.tn).cuda(args.proc_idx)
criterion_mod = nn.CrossEntropyLoss(ignore_index=-1).cuda(args.proc_idx)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
########################################################################################
# Start training
best_Dice = np.zeros(np.array(args.dataset_classes_list).sum())
for epoch in range(args.start_epoch, args.epochs):
logging.info(f"Starting epoch {epoch+1}/{args.epochs}")
exp_scheduler = exp_lr_scheduler_with_warmup(optimizer, init_lr=args.base_lr, epoch=epoch, warmup_epoch=args.warmup_epoch, max_epoch=args.epochs)
logging.info(f"Current lr: {exp_scheduler:.4e}")
train_epoch(trainLoader, net, ema_net, optimizer, epoch, writer, criterion_ce, criterion_dl, criterion_mod, scaler, args)
##################################################################################
# Evaluation, save checkpoint and log training info
net_for_eval = ema_net if args.ema else net
if is_master(args):
# save the latest checkpoint, including net, ema_net, and optimizer
net_state_dict, ema_net_state_dict = unwrap_model_checkpoint(net, ema_net, args)
torch.save({
'epoch': epoch+1,
'model_state_dict': net_state_dict,
'ema_model_state_dict': ema_net_state_dict,
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(args.cp_path, args.dataset, args.unique_name, 'latest.pth'))
if (epoch+1) % args.val_freq == 0 or (epoch+1>(args.epochs-20)):
best_Dice = validate(valLoader_list, net_for_eval, net, ema_net, epoch, writer, optimizer, args, best_Dice, prefix='val')
_ = validate(testLoader_list, net_for_eval, net, ema_net, epoch, writer, optimizer, args, best_Dice, prefix='test')
return best_Dice
def validate(loader_list, net_for_eval, net, ema_net, epoch, writer, optimizer, args, best_Dice, prefix='test'):
all_dice = []
for idx in range(len(loader_list)):
Loader = loader_list[idx]
dataset_name = args.dataset_name_list[idx]
dice_list_test = validation(net_for_eval, Loader, args)
if is_master(args):
logging.info(f"{dataset_name}: {dice_list_test}")
logging.info(f"{dataset_name} mean: {dice_list_test.mean()}")
log_evaluation_result(writer, dice_list_test, dataset_name, epoch, args, prefix)
all_dice += list(dice_list_test)
if is_master(args):
all_dice = np.array(all_dice)
log_overall_result(writer, all_dice, epoch, args, prefix)
if all_dice.mean() >= best_Dice.mean() and prefix == 'val':
best_Dice = all_dice
# Save the checkpoint with best performance
net_state_dict, ema_net_state_dict = unwrap_model_checkpoint(net, ema_net, args)
torch.save({
'epoch': epoch+1,
'model_state_dict': net_state_dict,
'ema_model_state_dict': ema_net_state_dict,
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(args.cp_path, args.dataset, args.unique_name, 'best.pth'))
logging.info("Evaluation Done")
logging.info(f"Dice: {all_dice.mean():.4f}/Best Dice: {best_Dice.mean():.4f}")
return best_Dice
def train_epoch(trainLoader, net, ema_net, optimizer, epoch, writer, criterion_ce, criterion_dl, criterion_mod, scaler, args):
batch_time = AverageMeter("Time", ":6.2f")
epoch_loss = AverageMeter("Loss", ":.2f")
epoch_loss_seg = AverageMeter("Loss_seg", ":.2f")
epoch_loss_mod = AverageMeter("Loss_mod", ":.2f")
epoch_mod_acc = AverageMeter("Acc_mod", ":.2f")
progress = ProgressMeter(
#len(trainLoader),
args.iter_per_epoch,
[batch_time, epoch_loss_seg, epoch_loss_mod, epoch_mod_acc],
prefix="Epoch: [{}]".format(epoch+1),
)
net.train()
tic = time.time()
iter_num_per_epoch = 0
for i, (img, label, tgt_idx, mod_idx) in enumerate(trainLoader):
img = img.cuda(args.proc_idx, non_blocking=True).float()
label = label.cuda(args.proc_idx, non_blocking=True).long()
tgt_idx = tgt_idx.cuda(args.proc_idx, non_blocking=True).long()
mod_idx = mod_idx.cuda(args.proc_idx, non_blocking=True).long()
step = i + epoch * len(trainLoader) # global steps
# remove extra padded for eficiency
max_cls_len = torch.max(torch.nonzero(tgt_idx!=-1), dim=0)[0][1] + 1
tgt_idx = tgt_idx[:, :max_cls_len+1]
label = label[:, :max_cls_len+1, :, :, :]
optimizer.zero_grad()
loss_seg = 0
if args.amp:
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
result, mod_result = net(img, tgt_idx, mod_idx.unsqueeze(1))
if isinstance(result, tuple) or isinstance(result, list):
# If use deep supervision, add all loss together
for j in range(len(result)):
loss_seg += args.aux_weight[j] * (criterion_ce(result[j], label, tgt_idx) + criterion_dl(result[j], label, tgt_idx))
else:
loss_seg = criterion_ce(result, label, tgt_idx) + criterion_dl(result, label, tgt_idx)
if (mod_idx == -1).all():
loss_mod = torch.tensor(0.0, requires_grad=True).to(mod_result.device)
else:
loss_mod = criterion_mod(mod_result, mod_idx)
loss = loss_seg + args.loss_mod_weight * loss_mod
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
result, mod_result = net(img, tgt_idx, mod_idx.unsqueeze(1))
if isinstance(result, tuple) or isinstance(result, list):
# If use deep supervision, add all loss together
for j in range(len(result)):
loss_seg += args.aux_weight[j] * (criterion_ce(result[j], label, tgt_idx) + criterion_dl(result[j], label, tgt_idx))
else:
loss_seg = criterion_ce(result, label, tgt_idx) + criterion_dl(result, label, tgt_idx)
if (mod_idx == -1).all():
loss_mod = torch.tensor(0.0, requires_grad=True).to(mod_result.device)
else:
loss_mod = criterion_mod(mod_result, mod_idx)
loss = loss_seg + args.loss_mod_weight * loss_mod
loss.backward()
optimizer.step()
if args.ema:
update_ema_variables(net, ema_net, args.ema_alpha, step)
_, mod_pred = torch.max(mod_result.data, 1)
correct = (mod_pred == mod_idx).sum().item()
total = (mod_idx != -1).sum().item()
mod_acc = correct / total if total != 0 else 0
epoch_loss.update(loss.item(), img.shape[0])
epoch_loss_seg.update(loss_seg.item(), img.shape[0])
epoch_loss_mod.update(loss_mod.item(), img.shape[0])
epoch_mod_acc.update(mod_acc, total)
batch_time.update(time.time() - tic)
tic = time.time()
if i % args.print_freq == 0:
progress.display(i)
if args.dimension == '3d':
iter_num_per_epoch += 1
if iter_num_per_epoch > args.iter_per_epoch:
break
if is_master(args):
writer.add_scalar('Train/Loss', epoch_loss.avg, epoch+1)
writer.add_scalar('LR', optimizer.param_groups[0]['lr'], epoch+1)
writer.add_scalar('Train/Loss_seg', epoch_loss_seg.avg, epoch+1)
writer.add_scalar('Train/Loss_mod', epoch_loss_mod.avg, epoch+1)
writer.add_scalar('Train/Acc_mod', epoch_mod_acc.avg, epoch+1)
def get_parser():
parser = argparse.ArgumentParser(description='Hermes, universal medical image segmentation')
parser.add_argument('--dataset', type=str, default='universal', help='dataset name')
parser.add_argument('--model', type=str, default='hermes_resunet', help='model name')
parser.add_argument('--dimension', type=str, default='3d', help='2d model or 3d model')
parser.add_argument('--pretrain', action='store_true', help='if use pretrained weight for init')
parser.add_argument('--amp', action='store_true', help='if use the automatic mixed precision for faster training')
parser.add_argument('--torch_compile', action='store_true', help='use torch.compile to accelerate training, only supported by PyTorch2.0')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--resume', action='store_true', help='if resume training from checkpoint')
parser.add_argument('--load', type=str, default=False, help='load pretrained model')
parser.add_argument('--cp_path', type=str, default='./exp/', help='the path to save checkpoint and logging info')
parser.add_argument('--log_path', type=str, default='./log/', help='the path to save tensorboard log')
parser.add_argument('--unique_name', type=str, default='test', help='unique experiment name')
parser.add_argument('--gpu', type=str, default='0,1,2,3,4,5,6,7')
args = parser.parse_args()
config_path = 'config/%s/%s_%s.yaml'%(args.dataset, args.model, args.dimension)
if not os.path.exists(config_path):
raise ValueError("The specified configuration doesn't exist: %s"%config_path)
logging.info('Loading configurations from %s'%config_path)
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.SafeLoader)
for key, value in config.items():
setattr(args, key, value)
return args
def init_network(args):
net = get_model(args, pretrain=args.pretrain)
if args.ema:
ema_net = get_model(args, pretrain=args.pretrain)
logging.info("Use EMA model for evaluation")
else:
ema_net = None
if args.resume:
resume_load_model_checkpoint(net, ema_net, args)
if args.torch_compile:
net = torch.compile(net)
return net, ema_net
def main_worker(proc_idx, ngpus_per_node, args, result_dict=None, trainset=None, valset=None, testset=None):
# seed each process
if args.reproduce_seed is not None:
random.seed(args.reproduce_seed)
np.random.seed(args.reproduce_seed)
torch.manual_seed(args.reproduce_seed)
if hasattr(torch, "set_deterministic"):
torch.set_deterministic(True)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# set process specific info
args.proc_idx = proc_idx
args.ngpus_per_node = ngpus_per_node
# suppress printing if not master
if args.multiprocessing_distributed and args.proc_idx != 0:
def print_pass(*args, **kwargs):
pass
builtins.print = print_pass
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + proc_idx
dist.init_process_group(
backend=args.dist_backend,
init_method=f"{args.dist_url}",
world_size=args.world_size,
rank=args.rank,
)
torch.cuda.set_device(args.proc_idx)
# adjust data settings according to multi-processing
args.batch_size = int(args.batch_size / args.world_size)
args.cp_dir = f"{args.cp_path}/{args.dataset}/{args.unique_name}"
os.makedirs(args.cp_dir, exist_ok=True)
configure_logger(args.rank, args.cp_dir+f"/log.txt")
save_configure(args)
logging.info(
f"\nDataset: {args.dataset},\n"
+ f"Model: {args.model},\n"
+ f"Dimension: {args.dimension}"
)
net, ema_net = init_network(args)
net.to(f"cuda")
if args.ema:
ema_net.to(f"cuda")
if args.distributed:
net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
net = DistributedDataParallel(net, device_ids=[args.proc_idx], find_unused_parameters=True)
# set find_unused_parameters to True if some of the parameters is not used in forward
if args.ema:
ema_net = nn.SyncBatchNorm.convert_sync_batchnorm(ema_net)
ema_net = DistributedDataParallel(ema_net, device_ids=[args.proc_idx], find_unused_parameters=True)
for p in ema_net.parameters():
p.requires_grad_(False)
logging.info(f"Created Model")
best_Dice = train_net(net, trainset, valset, testset, args, ema_net)
logging.info(f"Training and evaluation are done")
if args.distributed:
if is_master(args):
# collect results from the master process
result_dict['best_Dice'] = best_Dice
else:
return best_Dice
if __name__ == '__main__':
# parse the arguments
args = get_parser()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
args.log_path = os.path.join(args.log_path, args.dataset)
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
ngpus_per_node = torch.cuda.device_count()
args.world_size = ngpus_per_node * args.world_size
if args.world_size > 1:
args.multiprocessing_distributed = True
else:
args.multiprocessing_distributed = False
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if args.multiprocessing_distributed:
with mp.Manager() as manager:
# use the Manager to gather results from the processes
result_dict = manager.dict()
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
trainset = get_dataset(args, dataset_name_list=args.dataset_name_list, mode='train')
valset_list = []
for dataset_name in args.dataset_name_list:
valset = get_dataset(args, dataset_name_list=[dataset_name], mode='val')
valset_list.append(valset)
testset_list = []
for dataset_name in args.dataset_name_list:
testset = get_dataset(args, dataset_name_list=[dataset_name], mode='test')
testset_list.append(testset)
# Use torch.multiprocessing.spawn to launch distributed processes:
# the main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args, result_dict, trainset, valset_list, testset_list))
best_Dice = result_dict['best_Dice']
else:
trainset = get_dataset(args, dataset_name_list=args.dataset_name_list, mode='train')
valset_list = []
for dataset_name in args.dataset_name_list:
valset = get_dataset(args, dataset_name_list=[dataset_name], mode='val')
valset_list.append(valset)
testset_list = []
for dataset_name in args.dataset_name_list:
testset = get_dataset(args, dataset_name_list=[dataset_name], mode='test')
testset_list.append(testset)
# Simply call main_worker function
best_Dice = main_worker(0, ngpus_per_node, args, trainset=trainset, valset=valset_list, testset=testset_list)
#############################################################################################
with open(f"{args.cp_path}/{args.dataset}/{args.unique_name}/results.txt", 'w') as f:
np.set_printoptions(precision=4, suppress=True)
f.write('Dice\n')
f.write(f"Each Class Dice: {best_Dice}\n")
f.write(f"All classes Dice Avg: {best_Dice.mean()}\n")
f.write("\n")
logging.info('Training done.')
sys.exit(0)