-
Notifications
You must be signed in to change notification settings - Fork 0
/
results
21 lines (20 loc) · 3.23 KB
/
results
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ssh://[email protected]:22/home2/mrwu/anaconda3/bin/python -u /tmp/pycharm_project_521/main.py
Some weights of the model checkpoint at bert-base-chinese were not used when initializing BertModel: ['cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of the model checkpoint at bert-base-chinese were not used when initializing BertModel: ['cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Epoch 1/5: Train Loss=0.544, Train Acc=0.658, Val Loss=0.566, Val Acc=0.816
Test Loss: 0.566, Test Acc: 0.816
Epoch 2/5: Train Loss=0.562, Train Acc=0.782, Val Loss=0.469, Val Acc=0.816
Test Loss: 0.469, Test Acc: 0.816
Epoch 3/5: Train Loss=0.453, Train Acc=0.808, Val Loss=0.351, Val Acc=0.898
Test Loss: 0.351, Test Acc: 0.898
Epoch 4/5: Train Loss=0.392, Train Acc=0.876, Val Loss=0.347, Val Acc=0.918
Test Loss: 0.347, Test Acc: 0.918
Epoch 5/5: Train Loss=0.351, Train Acc=0.855, Val Loss=0.274, Val Acc=0.898
Test Loss: 0.274, Test Acc: 0.898
Text: 燕谷坊集团作为国家农业产业化重点龙头企业,积极实践“碳达峰”和“碳中和”时代使命。深入围绕“低碳农业、有机农业、绿色农业”,全产业链减碳。从产业上游推广“育种技术创新,绿色有机栽培技术推广,燕麦治沙。燕谷坊集团燕麦种植面积50万亩,促进大规模土地绿化行动进一步推进,加速碳减排协调实现;在数字化、智能化、科技化的引领下,产业中游深入开发燕麦全谷物加工链,不浪费燕麦一点,减少从良田到餐桌的食品损失,共同耕耘“无形良田”,利用数字化、智能化技术打造全谷物加工生产线,提高生产资源利用效率,减少温室气体排放;推动工业下游精心打造健康美味的绿色食品,获得国家绿色食品认证,促进绿色消费,发展绿色经济。
Sentiment: Positive, Probability: 0.910
Process finished with exit code 0