forked from ErinChen1/EPDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpix2pixHD_model.py
271 lines (232 loc) · 12.6 KB
/
pix2pixHD_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import numpy as np
import torch
import os
from torch.autograd import Variable
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
class Pix2PixHDModel(BaseModel):
def name(self):
return 'Pix2PixHDModel'
def initialize(self, opt):
BaseModel.initialize(self, opt)
if opt.resize_or_crop != 'none': # when training at full res this causes OOM
torch.backends.cudnn.benchmark = True
self.isTrain = opt.isTrain
self.use_features = opt.instance_feat or opt.label_feat
self.gen_features = self.use_features and not self.opt.load_features
input_nc = opt.label_nc if opt.label_nc != 0 else 3
##### define networks
# Generator network
netG_input_nc = input_nc
if not opt.no_instance:
netG_input_nc += 1
if self.use_features:
netG_input_nc += opt.feat_num
self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG,
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)
# Discriminator network
if self.isTrain:
use_sigmoid = opt.no_lsgan
netD_input_nc = input_nc + opt.output_nc
if not opt.no_instance:
netD_input_nc += 1
self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt.norm, use_sigmoid,
opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids)
### Encoder network
if self.gen_features:
self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder',
opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids)
print('---------- Networks initialized -------------')
# load networks
if not self.isTrain or opt.continue_train or opt.load_pretrain:
pretrained_path = '' if not self.isTrain else opt.load_pretrain
self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)
if self.isTrain:
self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path)
if self.gen_features:
self.load_network(self.netE, 'E', opt.which_epoch, pretrained_path)
# set loss functions and optimizers
if self.isTrain:
if opt.pool_size > 0 and (len(self.gpu_ids)) > 1:
raise NotImplementedError("Fake Pool Not Implemented for MultiGPU")
self.fake_pool = ImagePool(opt.pool_size)
self.old_lr = opt.lr
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionFeat = torch.nn.L1Loss()
self.criterionMse=torch.nn.MSELoss()
if not opt.no_vgg_loss:
self.criterionVGG = networks.VGGLoss(self.gpu_ids)
# Names so we can breakout loss
self.loss_names = ['G_GAN', 'G_GAN_Feat', 'G_VGG', 'D_real', 'D_fake','G_L2']
# initialize optimizers
# optimizer G
if opt.niter_fix_global > 0:
print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
params_dict = dict(self.netG.named_parameters())
params = []
for key, value in params_dict.items():
if key.startswith('model' + str(opt.n_local_enhancers)):
params += [{'params':[value],'lr':opt.lr}]
else:
params += [{'params':[value],'lr':0.0}]
params+=list(self.netG.dehaze.parameters())
else:
params = list(self.netG.parameters())
if self.gen_features:
params += list(self.netE.parameters())
# self.optimizer_G = torch.optim.Adam([{'params':self.netG.dehaze.parameters(), 'lr':opt.lr*2},{'params':self.netG.dehaze2.parameters(), 'lr':opt.lr*2},{'params':self.netG.model.parameters(),'lr':opt.lr}], betas=(opt.beta1, 0.999))
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),lr=opt.lr, betas=(opt.beta1, 0.999))
# optimizer D
params = list(self.netD.parameters())
self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))
def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):
if self.opt.label_nc == 0:
input_label = label_map.data.cuda()
else:
# create one-hot vector for label map
size = label_map.size()
oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
# get edges from instance map
if not self.opt.no_instance:
inst_map = inst_map.data.cuda()
edge_map = self.get_edges(inst_map)
input_label = torch.cat((input_label, edge_map), dim=1)
input_label = Variable(input_label, volatile=infer)
# real images for training
if real_image is not None:
real_image = Variable(real_image.data.cuda())
# instance map for feature encoding
if self.use_features:
# get precomputed feature maps
if self.opt.load_features:
feat_map = Variable(feat_map.data.cuda())
return input_label, inst_map, real_image, feat_map
def discriminate(self, input_label, test_image, use_pool=False):
input_concat = torch.cat((input_label, test_image.detach()), dim=1)
if use_pool:
fake_query = self.fake_pool.query(input_concat)
return self.netD.forward(fake_query)
else:
return self.netD.forward(input_concat)
def forward(self, label, inst, image, feat, infer=False):
# Encode Inputs
input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat)
# Fake Generation
if self.use_features:
if not self.opt.load_features:
feat_map = self.netE.forward(real_image, inst_map)
input_concat = torch.cat((input_label, feat_map), dim=1)
else:
input_concat = input_label
fake_image,enhance = self.netG.forward(input_concat)
# Fake Detection and Loss
pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True)
loss_D_fake = self.criterionGAN(pred_fake_pool, False)
# Real Detection and Loss
pred_real = self.discriminate(input_label, real_image)
loss_D_real = self.criterionGAN(pred_real, True)
# GAN loss (Fake Passability Loss)
pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1))
loss_G_GAN = self.criterionGAN(pred_fake, True)
# GAN feature matching loss
loss_G_GAN_Feat = 0
pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1))
if not self.opt.no_ganFeat_loss:
feat_weights = 4.0 / (self.opt.n_layers_D + 1)
D_weights = 1.0 / self.opt.num_D
for i in range(self.opt.num_D):
for j in range(len(pred_fake[i])-1):
loss_G_GAN_Feat += D_weights * feat_weights * \
self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat
# VGG feature matching loss
loss_G_VGG = 0
if not self.opt.no_vgg_loss:
loss_G_VGG = self.criterionVGG(enhance, real_image) * self.opt.lambda_feat
loss_G_L2= self.criterionMse(enhance, real_image)
# Only return the fake_B image if necessary to save BW
return [ [ loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake, loss_G_L2], None if not infer else [enhance,fake_image ]]
# self.loss_names = ['G_GAN', 'G_GAN_Feat', 'G_VGG', 'D_real', 'D_fake','G_L2']
def inference(self, label, inst):
# Encode Inputs
input_label, inst_map, _, _ = self.encode_input(Variable(label), Variable(inst), infer=True)
# Fake Generation
if self.use_features:
# sample clusters from precomputed features
feat_map = self.sample_features(inst_map)
input_concat = torch.cat((input_label, feat_map), dim=1)
else:
input_concat = input_label
fake_image = self.netG.forward(input_concat)
return fake_image
def sample_features(self, inst):
# read precomputed feature clusters
cluster_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, self.opt.cluster_path)
features_clustered = np.load(cluster_path).item()
# randomly sample from the feature clusters
inst_np = inst.cpu().numpy().astype(int)
feat_map = torch.cuda.FloatTensor(1, self.opt.feat_num, inst.size()[2], inst.size()[3])
for i in np.unique(inst_np):
label = i if i < 1000 else i//1000
if label in features_clustered:
feat = features_clustered[label]
cluster_idx = np.random.randint(0, feat.shape[0])
idx = (inst == i).nonzero()
for k in range(self.opt.feat_num):
feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
return feat_map
def encode_features(self, image, inst):
image = Variable(image.cuda(), volatile=True)
feat_num = self.opt.feat_num
h, w = inst.size()[2], inst.size()[3]
block_num = 32
feat_map = self.netE.forward(image, inst.cuda())
inst_np = inst.cpu().numpy().astype(int)
feature = {}
for i in range(self.opt.label_nc):
feature[i] = np.zeros((0, feat_num+1))
for i in np.unique(inst_np):
label = i if i < 1000 else i//1000
idx = (inst == i).nonzero()
num = idx.size()[0]
idx = idx[num//2,:]
val = np.zeros((1, feat_num+1))
for k in range(feat_num):
val[0, k] = feat_map[idx[0], idx[1] + k, idx[2], idx[3]].data[0]
val[0, feat_num] = float(num) / (h * w // block_num)
feature[label] = np.append(feature[label], val, axis=0)
return feature
def get_edges(self, t):
edge = torch.cuda.ByteTensor(t.size()).zero_()
edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
return edge.float()
def save(self, which_epoch):
self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
self.save_network(self.netD, 'D', which_epoch, self.gpu_ids)
if self.gen_features:
self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)
def update_fixed_params(self):
# after fixing the global generator for a number of iterations, also start finetuning it
params = list(self.netG.parameters())
if self.gen_features:
params += list(self.netE.parameters())
self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
print('------------ Now also finetuning global generator -----------')
def update_learning_rate(self):
lrd = self.opt.lr / self.opt.niter_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_D.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr