forked from whai362/PSENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ic15.py
283 lines (235 loc) · 11.2 KB
/
train_ic15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import sys
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import shutil
from torch.autograd import Variable
from torch.utils import data
import os
from dataset import IC15Loader
from metrics import runningScore
import models
from util import Logger, AverageMeter
import time
import util
def ohem_single(score, gt_text, training_mask):
pos_num = (int)(np.sum(gt_text > 0.5)) - (int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_num = (int)(np.sum(gt_text <= 0.5))
neg_num = (int)(min(pos_num * 3, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = score[gt_text <= 0.5]
neg_score_sorted = np.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = ((score >= threshold) | (gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
def ohem_batch(scores, gt_texts, training_masks):
scores = scores.data.cpu().numpy()
gt_texts = gt_texts.data.cpu().numpy()
training_masks = training_masks.data.cpu().numpy()
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :]))
selected_masks = np.concatenate(selected_masks, 0)
selected_masks = torch.from_numpy(selected_masks).float()
return selected_masks
def dice_loss(input, target, mask):
input = torch.sigmoid(input)
input = input.contiguous().view(input.size()[0], -1)
target = target.contiguous().view(target.size()[0], -1)
mask = mask.contiguous().view(mask.size()[0], -1)
input = input * mask
target = target * mask
a = torch.sum(input * target, 1)
b = torch.sum(input * input, 1) + 0.001
c = torch.sum(target * target, 1) + 0.001
d = (2 * a) / (b + c)
dice_loss = torch.mean(d)
return 1 - dice_loss
def cal_text_score(texts, gt_texts, training_masks, running_metric_text):
training_masks = training_masks.data.cpu().numpy()
pred_text = torch.sigmoid(texts).data.cpu().numpy() * training_masks
pred_text[pred_text <= 0.5] = 0
pred_text[pred_text > 0.5] = 1
pred_text = pred_text.astype(np.int32)
gt_text = gt_texts.data.cpu().numpy() * training_masks
gt_text = gt_text.astype(np.int32)
running_metric_text.update(gt_text, pred_text)
score_text, _ = running_metric_text.get_scores()
return score_text
def cal_kernel_score(kernels, gt_kernels, gt_texts, training_masks, running_metric_kernel):
mask = (gt_texts * training_masks).data.cpu().numpy()
kernel = kernels[:, -1, :, :]
gt_kernel = gt_kernels[:, -1, :, :]
pred_kernel = torch.sigmoid(kernel).data.cpu().numpy()
pred_kernel[pred_kernel <= 0.5] = 0
pred_kernel[pred_kernel > 0.5] = 1
pred_kernel = (pred_kernel * mask).astype(np.int32)
gt_kernel = gt_kernel.data.cpu().numpy()
gt_kernel = (gt_kernel * mask).astype(np.int32)
running_metric_kernel.update(gt_kernel, pred_kernel)
score_kernel, _ = running_metric_kernel.get_scores()
return score_kernel
def train(train_loader, model, criterion, optimizer, epoch):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
running_metric_text = runningScore(2)
running_metric_kernel = runningScore(2)
end = time.time()
for batch_idx, (imgs, gt_texts, gt_kernels, training_masks) in enumerate(train_loader):
data_time.update(time.time() - end)
imgs = Variable(imgs.cuda())
gt_texts = Variable(gt_texts.cuda())
gt_kernels = Variable(gt_kernels.cuda())
training_masks = Variable(training_masks.cuda())
outputs = model(imgs)
texts = outputs[:, 0, :, :]
kernels = outputs[:, 1:, :, :]
selected_masks = ohem_batch(texts, gt_texts, training_masks)
selected_masks = Variable(selected_masks.cuda())
loss_text = criterion(texts, gt_texts, selected_masks)
loss_kernels = []
mask0 = torch.sigmoid(texts).data.cpu().numpy()
mask1 = training_masks.data.cpu().numpy()
selected_masks = ((mask0 > 0.5) & (mask1 > 0.5)).astype('float32')
selected_masks = torch.from_numpy(selected_masks).float()
selected_masks = Variable(selected_masks.cuda())
for i in range(6):
kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = criterion(kernel_i, gt_kernel_i, selected_masks)
loss_kernels.append(loss_kernel_i)
loss_kernel = sum(loss_kernels) / len(loss_kernels)
loss = 0.7 * loss_text + 0.3 * loss_kernel
losses.update(loss.item(), imgs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
score_text = cal_text_score(texts, gt_texts, training_masks, running_metric_text)
score_kernel = cal_kernel_score(kernels, gt_kernels, gt_texts, training_masks, running_metric_kernel)
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % 20 == 0:
output_log = '({batch}/{size}) Batch: {bt:.3f}s | TOTAL: {total:.0f}min | ETA: {eta:.0f}min | Loss: {loss:.4f} | Acc_t: {acc: .4f} | IOU_t: {iou_t: .4f} | IOU_k: {iou_k: .4f}'.format(
batch=batch_idx + 1,
size=len(train_loader),
bt=batch_time.avg,
total=batch_time.avg * batch_idx / 60.0,
eta=batch_time.avg * (len(train_loader) - batch_idx) / 60.0,
loss=losses.avg,
acc=score_text['Mean Acc'],
iou_t=score_text['Mean IoU'],
iou_k=score_kernel['Mean IoU'])
print(output_log)
sys.stdout.flush()
return (losses.avg, score_text['Mean Acc'], score_kernel['Mean Acc'], score_text['Mean IoU'], score_kernel['Mean IoU'])
def adjust_learning_rate(args, optimizer, epoch):
global state
if epoch in args.schedule:
args.lr = args.lr * 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
def save_checkpoint(state, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
def main(args):
if args.checkpoint == '':
args.checkpoint = "checkpoints/ic15_%s_bs_%d_ep_%d"%(args.arch, args.batch_size, args.n_epoch)
if args.pretrain:
if 'synth' in args.pretrain:
args.checkpoint += "_pretrain_synth"
else:
args.checkpoint += "_pretrain_ic17"
print ('checkpoint path: %s'%args.checkpoint)
print ('init lr: %.8f'%args.lr)
print ('schedule: ', args.schedule)
sys.stdout.flush()
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
kernel_num = 7
min_scale = 0.4
start_epoch = 0
data_loader = IC15Loader(is_transform=True, img_size=args.img_size, kernel_num=kernel_num, min_scale=min_scale)
train_loader = torch.utils.data.DataLoader(
data_loader,
batch_size=args.batch_size,
shuffle=True,
num_workers=0,
drop_last=True,
pin_memory=True)
if args.arch == "resnet50":
model = models.resnet50(pretrained=True, num_classes=kernel_num)
elif args.arch == "resnet101":
model = models.resnet101(pretrained=True, num_classes=kernel_num)
elif args.arch == "resnet152":
model = models.resnet152(pretrained=True, num_classes=kernel_num)
model = torch.nn.DataParallel(model).cuda()
if hasattr(model.module, 'optimizer'):
optimizer = model.module.optimizer
else:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.99, weight_decay=5e-4)
title = 'icdar2015'
if args.pretrain:
print('Using pretrained model.')
assert os.path.isfile(args.pretrain), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.pretrain)
model.load_state_dict(checkpoint['state_dict'])
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss','Train Acc.', 'Train IOU.'])
elif args.resume:
print('Resuming from checkpoint.')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
print('Training from scratch.')
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss','Train Acc.', 'Train IOU.'])
for epoch in range(start_epoch, args.n_epoch):
adjust_learning_rate(args, optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.n_epoch, optimizer.param_groups[0]['lr']))
train_loss, train_te_acc, train_ke_acc, train_te_iou, train_ke_iou = train(train_loader, model, dice_loss, optimizer, epoch)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'lr': args.lr,
'optimizer' : optimizer.state_dict(),
}, checkpoint=args.checkpoint)
logger.append([optimizer.param_groups[0]['lr'], train_loss, train_te_acc, train_te_iou])
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch', nargs='?', type=str, default='resnet50')
parser.add_argument('--img_size', nargs='?', type=int, default=640,
help='Height of the input image')
parser.add_argument('--n_epoch', nargs='?', type=int, default=600,
help='# of the epochs')
parser.add_argument('--schedule', type=int, nargs='+', default=[200, 400],
help='Decrease learning rate at these epochs.')
parser.add_argument('--batch_size', nargs='?', type=int, default=16,
help='Batch Size')
parser.add_argument('--lr', nargs='?', type=float, default=1e-3,
help='Learning Rate')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--pretrain', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
args = parser.parse_args()
main(args)