forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile_kaldi2.gpu
205 lines (164 loc) · 9.14 KB
/
Makefile_kaldi2.gpu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# WORK IN PROGRESS, not currently complete nor usable
# NOTE: We are in the process of consolidating all Makefile's into a single one,
# with different build options. In the meantime, all active work will go into Makefile.gpu
# and other Makefile's, like this one, may fall behind.
# makefile for a Linux/GCC build of CNTK
# This needs ACML_PATH. E.g. in tcsh, say: setenv ACML_PATH C:/AMD/acml5.3.1/ifort64_mp
# This is work in progress and not at all complete or usable.
#
# The Linux and Windows versions are not different branches, but rather build off the same
# source files, using different makefiles. This current makefile has the purpose of enabling
# work to make all sources compile with GCC, and also to check for GCC-compat regressions due to
# modifications which are currently done under Windows.
#
# The planned steps are:
# - runnable non-GPU GCC-built version under Cygwin
# - get all CPU-only sources to compile with GCC/x64 under Cygwin --currently ongoing work
# - port the dynamic-loading mechanism
# - runnable non-GPU version on actual Linux
# - enable CUDA on Linux (=makefile code and figuring out the right compiler options)
#
# Any help is welcome, of course!
#
# This makefile will be extended/completed as we go.
#
# You may need to do the following or something similar for all this to work
# export LD_LIBRARY_PATH=/usr/local/acml5.3.0/gfortran64/lib:/usr/local/cuda/lib64:/usr/local/lib
# export PATH=$PATH:/usr/local/bin:/usr/local/cuda/bin
#
# WARNING:
# Since we now compile against Kaldi lattices, which depend on OpenFst, you
# will have to re-compile Kaldi with OpenFst 1.4.1 (lower version of OpenFst
# does not support c++11). You can do the following:
# 1. In kaldi-trunk/tools/Makefile, uncomment # OPENFST_VERSION = 1.4.1, and
# re-install OpenFst using the makefile.
# 2. In kaldi-trunk/src/, do ./configure --shared; make depend -j 8; make -j 8;
# and re-compile Kaldi.
#
# Besides, if you compile Kaldi with -O4 option instead of -g, it will be faster
# in sequence training.
CC = g++-4.8
NVCC = nvcc
ARCH = x86_64
DEVICE = gpu
#BUILDTYPE = debug
BUILDTYPE = release
# comment following and uncomment the next one to enable MKL library
#MATHLIB = acml
MATHLIB = mkl
# modify relevant path below for your system
MKL_PATH = /usr/users/yzhang87/tools/composer_xe_2015.2.164
ACML_PATH = /usr/users/yzhang87/code/acml/gfortran64
#######
BUILDFOR = $(ARCH).$(DEVICE).$(BUILDTYPE).$(MATHLIB)
OBJDIR = .build/$(BUILDFOR)
BINDIR = bin/$(BUILDFOR)
ifeq ($(BUILDTYPE),debug)
BUILDTYPE_OPT = -g
GPU_BUILDTYPE_OPT = -G
else
BUILDTYPE_OPT = -O4
GPU_BUILDTYPE_OPT =
endif
ifeq ($(MATHLIB),mkl)
MATHLIB_INCLUDE = $(MKL_PATH)/mkl/include
MATHLIB_LIB = -L$(MKL_PATH)/compiler/lib/intel64 -L$(MKL_PATH)/mkl/lib/intel64 -L$(MKL_PATH)/compiler/lib/mic -L$(MKL_PATH)/mkl/lib/mic -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lm -liomp5 -lpthread
MATHLIB_DEFINE = -DUSE_MKL
else
MATHLIB_INCLUDE = $(ACML_PATH)/include
MATHLIB_LIB = -L$(ACML_PATH)/lib -lacml -lm -lpthread
MATHLIB_DEFINE = -DUSE_ACML
endif
CUDA_PATH = /scratch/cuda-6.5
CUDA_INCLUDE = $(CUDA_PATH)/include
CUDA_LIB = -L$(CUDA_PATH)/lib64 -lcublas -lcudart -lcuda -lcurand -lcusparse -lnvidia-ml
NVML_INCLUDE = /scratch/usr/include/nvidia/gdk # install and include it @ https://developer.nvidia.com/gpu-deployment-kit
# Add KALDI (you need to add your Kaldi path into this file)
include kaldi_vars.mk
INCFLAGS = -I Common/Include -I Math/Math -I MachineLearning/CNTK -I $(CUDA_INCLUDE) -I $(MATHLIB_INCLUDE) $(KALDI_INCLUDES) -I $(NVML_INCLUDE)
CFLAGS = -msse3 -std=c++0x -std=c++11 -D_POSIX_SOURCE -D_XOPEN_SOURCE=600 -D__USE_XOPEN2K $(MATHLIB_DEFINE) -fopenmp -fpermissive $(KALDI_DEFINES)
NVCCFLAGS = -std=c++11 -D_POSIX_SOURCE -D_XOPEN_SOURCE=600 -D__USE_XOPEN2K -arch=compute_20 $(KALDI_DEFINES)
COMMON_SRC = Common/fileutil.cpp Common/DataWriter.cpp Common/ConfigFile.cpp Common/DataReader.cpp \
Common/Eval.cpp Common/File.cpp Common/BestGpu.cpp Common/TimerUtility.cpp
MATH_SRC = Math/Math/Matrix.cpp Math/Math/GPUMatrix.cu Math/Math/GPUMatrixCUDAKernels.cu Math/Math/GPUSparseMatrix.cu Math/Math/GPUWatcher.cu \
Math/Math/CPUMatrix.cpp Math/Math/CPUSparseMatrix.cpp #Math/Math/InstantiateTemplates.cu
CN_SRC = MachineLearning/CNTK/NetworkDescriptionLanguage.cpp MachineLearning/CNTK/CNTK.cpp MachineLearning/CNTK/ComputationNode.cpp \
MachineLearning/CNTK/ModelEditLanguage.cpp \
MachineLearning/CNTK/SimpleNetworkBuilder.cpp \
MachineLearning/CNTK/Profiler.cpp MachineLearning/CNTK/tests.cpp MachineLearning/CNTKEval/CNTKEval.cpp
BINARYREADER_SRC = #DataReader/BinaryReader/BinaryWriter.cpp DataReader/BinaryReader/BinaryReader.cpp DataReader/BinaryReader/BinaryFile.cpp
HTKMLFREADER_SRC = DataReader/HTKMLFReader_linux/HTKMLFWriter.cpp DataReader/HTKMLFReader_linux/DataWriter.cpp DataReader/HTKMLFReader_linux/DataReader.cpp DataReader/HTKMLFReader_linux/HTKMLFReader.cpp
KALDIREADER_SRC = DataReader/KaldiReader/HTKMLFWriter.cpp DataReader/KaldiReader/DataWriter.cpp DataReader/KaldiReader/DataReader.cpp DataReader/KaldiReader/HTKMLFReader.cpp
KALDI2READER_SRC = DataReader/Kaldi2Reader/HTKMLFWriter.cpp DataReader/Kaldi2Reader/DataWriter.cpp DataReader/Kaldi2Reader/DataReader.cpp DataReader/Kaldi2Reader/HTKMLFReader.cpp DataReader/Kaldi2Reader/UtteranceDerivativeBuffer.cpp DataReader/Kaldi2Reader/KaldiSequenceTrainingDerivative.cpp
SEQUENCEREADER_SRC = DataReader/LMSequenceReader/SequenceReader.cpp DataReader/LMSequenceReader/SequenceParser.cpp DataReader/LMSequenceReader/Exports.cpp
LUSEQUENCEREADER_SRC = DataReader/LUSequenceReader/LUSequenceReader.cpp DataReader/LUSequenceReader/LUSequenceParser.cpp DataReader/LUSequenceReader/Exports.cpp
UCIFASTREADER_SRC = DataReader/UCIFastReader/UCIParser.cpp DataReader/UCIFastReader/UCIFastReader.cpp DataReader/UCIFastReader/Exports.cpp
READER_SRC = $(UCIFASTREADER_SRC) $(LUSEQUENCEREADER_SRC) $(HTKMLFREADER_SRC) $(SEQUENCEREADER_SRC) $(BINARYREADER_SRC) $(KALDIREADER_SRC) $(KALDI2READER_SRC)
CORE_SRC = $(CN_SRC) $(MATH_SRC) $(COMMON_SRC)
SRC = $(READER_SRC) $(CORE_SRC)
VPATH := $(sort $(dir $(SRC)))
OBJ_TMP := $(patsubst %.cpp, $(OBJDIR)/%.o, $(SRC))
OBJ := $(patsubst %.cu, $(OBJDIR)/%.o, $(OBJ_TMP))
CORE_OBJ_TMP := $(patsubst %.cpp, $(OBJDIR)/%.o, $(CORE_SRC))
CORE_OBJ := $(patsubst %.cu, $(OBJDIR)/%.o, $(CORE_OBJ_TMP))
UCIFASTREADER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(UCIFASTREADER_SRC))
LUSEQUENCEREADER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(LUSEQUENCEREADER_SRC))
SEQUENCEREADER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(SEQUENCEREADER_SRC))
HTKMLFREADER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(HTKMLFREADER_SRC))
KALDIREADER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(KALDIREADER_SRC))
KALDI2READER_OBJ := $(patsubst %.cpp, $(OBJDIR)/%.o, $(KALDI2READER_SRC))
DEP := $(patsubst %.o, %.d, $(OBJ))
SEPARATOR = "=-----------------------------------------------------------="
all: $(BINDIR)/cntk $(BINDIR)/UCIFastReader.so $(BINDIR)/LMSequenceReader.so $(BINDIR)/LUSequenceReader.so $(BINDIR)/HTKMLFReader.so $(BINDIR)/Kaldi2Reader.so
ln -sf $(CURDIR)/$(BINDIR)/* bin
$(BINDIR)/UCIFastReader.so: $(UCIFASTREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^
$(BINDIR)/LMSequenceReader.so: $(SEQUENCEREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^
$(BINDIR)/LUSequenceReader.so: $(LUSEQUENCEREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^
$(BINDIR)/HTKMLFReader.so: $(HTKMLFREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^
$(BINDIR)/KaldiReader.so: $(KALDIREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^ $(KALDI_LIBS)
$(BINDIR)/KaldiWriter.so: $(KALDIREADER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^
$(BINDIR)/Kaldi2Reader.so: $(KALDI2READER_OBJ) $(CORE_OBJ)
@echo $(SEPARATOR)
$(CC) $(BUILDTYPE_OPT) -fPIC -shared -o $@ $^ $(KALDI_LIBS)
#$(BINDIR)/HTKMLFReader.so: ${HTKMLFREADER_SRC:.cpp=.o} ${COMMON_SRC:.cpp=.o} $(CORE_OBJ)
# @echo $(SEPARATOR)
# $(CC) -o $(addsuffix .so, $@) $^ -fPIC -shared
#BinaryReader: ${BINARYREADER_SRC:.cpp=.o} ${COMMON_SRC:.cpp=.o}
# $(CC) -o $(addsuffix .so, $@) $^ -fPIC -shared
$(BINDIR)/cntk: $(CORE_OBJ)
@echo $(SEPARATOR)
@mkdir -p $(dir $@)
@echo building output for $(ARCH) with build type $(BUILDTYPE)
$(CC) $(BUILDTYPE_OPT) -o $@ $^ $(CUDA_LIB) $(MATHLIB_LIB) -fopenmp -ldl -fPIC
-include ${DEP}
$(OBJDIR)/%.o : %.cu Makefile
@echo $(SEPARATOR)
@echo creating $@ for $(ARCH) with build type $(BUILDTYPE)
@mkdir -p $(dir $@)
$(NVCC) -c $< -o $@ $(BUILDTYPE_OPT) $(GPU_BUILDTYPE_OPT) $(NVCCFLAGS) $(INCFLAGS) -Xcompiler -fPIC
$(OBJDIR)/%.o : %.cpp Makefile
@echo $(SEPARATOR)
@echo creating $@ for $(ARCH) with build type $(BUILDTYPE)
@mkdir -p $(dir $@)
$(CC) -c $< -o $@ $(BUILDTYPE_OPT) $(CPPFLAGS) $(CFLAGS) $(INCFLAGS) -fPIC -MD -MP -MF ${@:.o=.d}
$(OBJDIR)/%.o : %.cc Makefile
@echo $(SEPARATOR)
@echo creating $@ for $(ARCH) with build type $(BUILDTYPE)
@mkdir -p $(dir $@)
$(CC) -c $< -o $@ $(BUILDTYPE_OPT) $(CPPFLAGS) $(CFLAGS) $(INCFLAGS) -fPIC -MD -MP -MF ${@:.o=.d}
.PHONY: clean
clean:
rm -rf $(OBJDIR)
rm -rf $(BINDIR)