forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLproject
86 lines (74 loc) · 3.61 KB
/
MLproject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
name: HyperparameterSearch
conda_env: conda.yaml
entry_points:
# train Keras DL model
train:
parameters:
training_data: {type: string, default: "../sklearn_elasticnet_wine/wine-quality.csv"}
epochs: {type: int, default: 32}
batch_size: {type: int, default: 16}
learning_rate: {type: float, default: 1e-1}
momentum: {type: float, default: .0}
seed: {type: int, default: 97531}
command: "python train.py {training_data}
--batch-size {batch_size}
--epochs {epochs}
--learning-rate {learning_rate}
--momentum {momentum}"
# Use random search to optimize hyperparams of the train entry_point.
random:
parameters:
training_data: {type: string, default: "../sklearn_elasticnet_wine/wine-quality.csv"}
max_runs: {type: int, default: 8}
max_p: {type: int, default: 2}
epochs: {type: int, default: 32}
metric: {type: string, default: "rmse"}
seed: {type: int, default: 97531}
command: "python search_random.py {training_data}
--max-runs {max_runs}
--max-p {max_p}
--epochs {epochs}
--metric {metric}
--seed {seed}"
# Use GPyOpt to optimize hyperparams of the train entry_point.
gpyopt:
parameters:
training_data: {type: string, default: "../sklearn_elasticnet_wine/wine-quality.csv"}
max_runs: {type: int, default: 8}
batch_size: {type: int, default: 2}
max_p: {type: int, default: 2}
epochs: {type: int, default: 32}
metric: {type: string, default: "rmse"}
gpy_model: {type: string, default: "GP"}
gpy_acquisition: {type: string, default: "EI"}
initial_design: {type: string, default: "random"}
seed: {type: int, default: 97531}
command: "python search_gpyopt.py {training_data}
--max-runs {max_runs}
--batch-size {batch_size}
--max-p {max_p}
--epochs {epochs}
--metric {metric}
--gpy-model {gpy_model}
--gpy-acquisition {gpy_acquisition}
--initial-design {initial_design}
--seed {seed}"
# Use Hyperopt to optimize hyperparams of the train entry_point.
hyperopt:
parameters:
training_data: {type: string, default: "../sklearn_elasticnet_wine/wine-quality.csv"}
max_runs: {type: int, default: 12}
epochs: {type: int, default: 32}
metric: {type: string, default: "rmse"}
algo: {type: string, default: "tpe.suggest"}
seed: {type: int, default: 97531}
command: "python -O search_hyperopt.py {training_data}
--max-runs {max_runs}
--epochs {epochs}
--metric {metric}
--algo {algo}
--seed {seed}"
main:
parameters:
training_data: {type: string, default: "../sklearn_elasticnet_wine/wine-quality.csv"}
command: "python search_random.py {training_data}"