Skip to content

Latest commit

 

History

History
69 lines (53 loc) · 6.97 KB

vietnamese.md

File metadata and controls

69 lines (53 loc) · 6.97 KB

Vietnamese NLP tasks

Word segmentation

  • Training data: 75k manually word-segmented training sentences from the VLSP 2013 word segmentation shared task.
  • Test data: 2120 test sentences from the VLSP 2013 POS tagging shared task.
Model F1 Paper Code
VnCoreNLP-RDRsegmenter (2018) 97.90 A Fast and Accurate Vietnamese Word Segmenter Official
UETsegmenter (2016) 97.87 A hybrid approach to Vietnamese word segmentation Official
vnTokenizer (2008) 97.33 A Hybrid Approach to Word Segmentation of Vietnamese Texts
JVnSegmenter (2006) 97.06 Vietnamese Word Segmentation with CRFs and SVMs: An Investigation
DongDu (2012) 96.90 Ứng dụng phương pháp Pointwise vào bài toán tách từ cho tiếng Việt

POS tagging

  • 27,870 sentences for training and development from the VLSP 2013 POS tagging shared task:
    • 27k sentences are used for training.
    • 870 sentences are used for development.
  • Test data: 2120 test sentences from the VLSP 2013 POS tagging shared task.
Model Accuracy Paper Code
VnCoreNLP-VnMarMoT (2017) 95.88 From Word Segmentation to POS Tagging for Vietnamese Official
BiLSTM-CRF + CNN-char (2016) 95.40 End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF Official / Link
BiLSTM-CRF + LSTM-char (2016) 95.31 Neural Architectures for Named Entity Recognition Link
BiLSTM-CRF (2015) 95.06 Bidirectional LSTM-CRF Models for Sequence Tagging Link
RDRPOSTagger (2014) 95.11 RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger Official

Named entity recognition

  • 16,861 sentences for training and development from the VLSP 2016 NER shared task:
    • 14,861 sentences are used for training.
    • 2k sentences are used for development.
  • Test data: 2,831 test sentences from the VLSP 2016 NER shared task.
  • NOTE that in the VLSP 2016 NER data, each word representing a full personal name are separated into syllables that constitute the word. The VLSP 2016 NER data also consists of gold POS and chunking tags as reconfirmed by VLSP 2016 organizers. This scheme results in an unrealistic scenario for a pipeline evaluation:
    • The standard annotation for Vietnamese word segmentation and POS tagging forms each full name as a word token, thus all word segmenters have been trained to output a full name as a word and all POS taggers have been trained to assign a POS label to the entire full-name.
    • Gold POS and chunking tags are NOT available in a real-world application.
  • For a realistic scenario, contiguous syllables constituting a full name are merged to form a word. Then, POS tags are predicted by using VnCoreNLP-VnMarMoT.
Model F1 Paper Code
VnCoreNLP (2018) 88.55 VnCoreNLP: A Vietnamese Natural Language Processing Toolkit Official
BiLSTM-CRF + CNN-char (2016) 88.28 End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF Official / Link
BiLSTM-CRF + LSTM-char (2016) 87.71 Neural Architectures for Named Entity Recognition Link
BiLSTM-CRF (2015) 86.48 Bidirectional LSTM-CRF Models for Sequence Tagging Link

Dependency parsing

  • The last 1020 sentences of the benchmark Vietnamese dependency treebank VnDT are used for test, while the remaining 9k+ sentences are used for training & development. LAS and UAS scores are computed on all tokens (i.e. including punctuation).
Model LAS UAS Paper Code
Predicted POS VnCoreNLP (2018) 70.23 76.93 VnCoreNLP: A Vietnamese Natural Language Processing Toolkit Official
Gold POS VnCoreNLP (2018) 73.39 79.02 VnCoreNLP: A Vietnamese Natural Language Processing Toolkit Official
Gold POS BiLSTM graph-based parser (2016) 73.17 79.39 Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations Official
Gold POS BiLSTM transition-based parser (2016) 72.53 79.33 Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations Official
Gold POS MSTparser (2006) 70.29 76.47 Online large-margin training of dependency parsers
Gold POS MaltParser (2007) 69.10 74.91 MaltParser: A language-independent system for datadriven dependency parsing