forked from lh3/bwa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwape.c
782 lines (723 loc) · 28.6 KB
/
bwape.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#include <unistd.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include "bwtaln.h"
#include "kvec.h"
#include "bntseq.h"
#include "utils.h"
#include "bwase.h"
#include "bwa.h"
#include "ksw.h"
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
typedef struct {
int n;
bwtint_t *a;
} poslist_t;
typedef struct {
double avg, std, ap_prior;
bwtint_t low, high, high_bayesian;
} isize_info_t;
#define b128_eq(a, b) ((a).x == (b).x && (a).y == (b).y)
#define b128_hash(a) ((uint32_t)(a).x)
#include "khash.h"
KHASH_INIT(b128, pair64_t, poslist_t, 1, b128_hash, b128_eq)
typedef struct {
pair64_v arr;
pair64_v pos[2];
kvec_t(bwt_aln1_t) aln[2];
} pe_data_t;
#define MIN_HASH_WIDTH 1000
extern int g_log_n[256]; // in bwase.c
static kh_b128_t *g_hash;
void bwa_aln2seq_core(int n_aln, const bwt_aln1_t *aln, bwa_seq_t *s, int set_main, int n_multi);
void bwa_aln2seq(int n_aln, const bwt_aln1_t *aln, bwa_seq_t *s);
int bwa_approx_mapQ(const bwa_seq_t *p, int mm);
void bwa_print_sam1(const bntseq_t *bns, bwa_seq_t *p, const bwa_seq_t *mate, int mode, int max_top2);
bntseq_t *bwa_open_nt(const char *prefix);
void bwa_print_sam_SQ(const bntseq_t *bns);
pe_opt_t *bwa_init_pe_opt()
{
pe_opt_t *po;
po = (pe_opt_t*)calloc(1, sizeof(pe_opt_t));
po->max_isize = 500;
po->force_isize = 0;
po->max_occ = 100000;
po->n_multi = 3;
po->N_multi = 10;
po->type = BWA_PET_STD;
po->is_sw = 1;
po->ap_prior = 1e-5;
return po;
}
/*
static double ierfc(double x) // inverse erfc(); iphi(x) = M_SQRT2 *ierfc(2 * x);
{
const double a = 0.140012;
double b, c;
b = log(x * (2 - x));
c = 2./M_PI/a + b / 2.;
return sqrt(sqrt(c * c - b / a) - c);
}
*/
// for normal distribution, this is about 3std
#define OUTLIER_BOUND 2.0
static int infer_isize(int n_seqs, bwa_seq_t *seqs[2], isize_info_t *ii, double ap_prior, int64_t L)
{
uint64_t x, *isizes, n_ap = 0;
int n, i, tot, p25, p75, p50, max_len = 1, tmp;
double skewness = 0.0, kurtosis = 0.0, y;
ii->avg = ii->std = -1.0;
ii->low = ii->high = ii->high_bayesian = 0;
isizes = (uint64_t*)calloc(n_seqs, 8);
for (i = 0, tot = 0; i != n_seqs; ++i) {
bwa_seq_t *p[2];
p[0] = seqs[0] + i; p[1] = seqs[1] + i;
if (p[0]->mapQ >= 20 && p[1]->mapQ >= 20) {
x = (p[0]->pos < p[1]->pos)? p[1]->pos + p[1]->len - p[0]->pos : p[0]->pos + p[0]->len - p[1]->pos;
if (x < 100000) isizes[tot++] = x;
}
if (p[0]->len > max_len) max_len = p[0]->len;
if (p[1]->len > max_len) max_len = p[1]->len;
}
if (tot < 20) {
fprintf(stderr, "[infer_isize] fail to infer insert size: too few good pairs\n");
free(isizes);
return -1;
}
ks_introsort_64(tot, isizes);
p25 = isizes[(int)(tot*0.25 + 0.5)];
p50 = isizes[(int)(tot*0.50 + 0.5)];
p75 = isizes[(int)(tot*0.75 + 0.5)];
tmp = (int)(p25 - OUTLIER_BOUND * (p75 - p25) + .499);
ii->low = tmp > max_len? tmp : max_len; // ii->low is unsigned
ii->high = (int)(p75 + OUTLIER_BOUND * (p75 - p25) + .499);
if (ii->low > ii->high) {
fprintf(stderr, "[infer_isize] fail to infer insert size: upper bound is smaller than read length\n");
free(isizes);
return -1;
}
for (i = 0, x = n = 0; i < tot; ++i)
if (isizes[i] >= ii->low && isizes[i] <= ii->high)
++n, x += isizes[i];
ii->avg = (double)x / n;
for (i = 0; i < tot; ++i) {
if (isizes[i] >= ii->low && isizes[i] <= ii->high) {
double tmp = (isizes[i] - ii->avg) * (isizes[i] - ii->avg);
ii->std += tmp;
skewness += tmp * (isizes[i] - ii->avg);
kurtosis += tmp * tmp;
}
}
kurtosis = kurtosis/n / (ii->std / n * ii->std / n) - 3;
ii->std = sqrt(ii->std / n); // it would be better as n-1, but n is usually very large
skewness = skewness / n / (ii->std * ii->std * ii->std);
for (y = 1.0; y < 10.0; y += 0.01)
if (.5 * erfc(y / M_SQRT2) < ap_prior / L * (y * ii->std + ii->avg)) break;
ii->high_bayesian = (bwtint_t)(y * ii->std + ii->avg + .499);
for (i = 0; i < tot; ++i)
if (isizes[i] > ii->high_bayesian) ++n_ap;
ii->ap_prior = .01 * (n_ap + .01) / tot;
if (ii->ap_prior < ap_prior) ii->ap_prior = ap_prior;
free(isizes);
fprintf(stderr, "[infer_isize] (25, 50, 75) percentile: (%d, %d, %d)\n", p25, p50, p75);
if (isnan(ii->std) || p75 > 100000) {
ii->low = ii->high = ii->high_bayesian = 0; ii->avg = ii->std = -1.0;
fprintf(stderr, "[infer_isize] fail to infer insert size: weird pairing\n");
return -1;
}
for (y = 1.0; y < 10.0; y += 0.01)
if (.5 * erfc(y / M_SQRT2) < ap_prior / L * (y * ii->std + ii->avg)) break;
ii->high_bayesian = (bwtint_t)(y * ii->std + ii->avg + .499);
fprintf(stderr, "[infer_isize] low and high boundaries: %ld and %ld for estimating avg and std\n", (long)ii->low, (long)ii->high);
fprintf(stderr, "[infer_isize] inferred external isize from %d pairs: %.3lf +/- %.3lf\n", n, ii->avg, ii->std);
fprintf(stderr, "[infer_isize] skewness: %.3lf; kurtosis: %.3lf; ap_prior: %.2e\n", skewness, kurtosis, ii->ap_prior);
fprintf(stderr, "[infer_isize] inferred maximum insert size: %ld (%.2lf sigma)\n", (long)ii->high_bayesian, y);
return 0;
}
static int pairing(bwa_seq_t *p[2], pe_data_t *d, const pe_opt_t *opt, int s_mm, const isize_info_t *ii)
{
int i, j, o_n, subo_n, cnt_chg = 0, low_bound = ii->low, max_len;
uint64_t o_score, subo_score;
pair64_t last_pos[2][2], o_pos[2];
max_len = p[0]->full_len;
if (max_len < p[1]->full_len) max_len = p[1]->full_len;
if (low_bound < max_len) low_bound = max_len;
// here v>=u. When ii is set, we check insert size with ii; otherwise with opt->max_isize
#define __pairing_aux(u,v) do { \
bwtint_t l = (v).x + p[(v).y&1]->len - ((u).x); \
if ((u).x != (uint64_t)-1 && (v).x > (u).x && l >= max_len \
&& ((ii->high && l <= ii->high_bayesian) || (ii->high == 0 && l <= opt->max_isize))) \
{ \
uint64_t s = d->aln[(v).y&1].a[(v).y>>2].score + d->aln[(u).y&1].a[(u).y>>2].score; \
s *= 10; \
if (ii->high) s += (int)(-4.343 * log(.5 * erfc(M_SQRT1_2 * fabs(l - ii->avg) / ii->std)) + .499); \
s = s<<32 | (uint32_t)hash_64((u).x<<32 | (v).x); \
if (s>>32 == o_score>>32) ++o_n; \
else if (s>>32 < o_score>>32) { subo_n += o_n; o_n = 1; } \
else ++subo_n; \
if (s < o_score) subo_score = o_score, o_score = s, o_pos[(u).y&1] = (u), o_pos[(v).y&1] = (v); \
else if (s < subo_score) subo_score = s; \
} \
} while (0)
#define __pairing_aux2(q, w) do { \
const bwt_aln1_t *r = d->aln[(w).y&1].a + ((w).y>>2); \
(q)->extra_flag |= SAM_FPP; \
if ((q)->pos != (w).x || (q)->strand != ((w).y>>1&1)) { \
(q)->n_mm = r->n_mm; (q)->n_gapo = r->n_gapo; (q)->n_gape = r->n_gape; (q)->strand = (w).y>>1&1; \
(q)->score = r->score; \
(q)->pos = (w).x; \
if ((q)->mapQ > 0) ++cnt_chg; \
} \
} while (0)
o_score = subo_score = (uint64_t)-1;
o_n = subo_n = 0;
ks_introsort_128(d->arr.n, d->arr.a);
for (j = 0; j < 2; ++j) last_pos[j][0].x = last_pos[j][0].y = last_pos[j][1].x = last_pos[j][1].y = (uint64_t)-1;
if (opt->type == BWA_PET_STD) {
for (i = 0; i < d->arr.n; ++i) {
pair64_t x = d->arr.a[i];
int strand = x.y>>1&1;
if (strand == 1) { // reverse strand, then check
int y = 1 - (x.y&1);
__pairing_aux(last_pos[y][1], x);
__pairing_aux(last_pos[y][0], x);
} else { // forward strand, then push
last_pos[x.y&1][0] = last_pos[x.y&1][1];
last_pos[x.y&1][1] = x;
}
}
} else {
fprintf(stderr, "[paring] not implemented yet!\n");
exit(1);
}
// set pairing
//fprintf(stderr, "[%ld, %d, %d, %d]\n", d->arr.n, (int)(o_score>>32), (int)(subo_score>>32), o_n);
if (o_score != (uint64_t)-1) {
int mapQ_p = 0; // this is the maximum mapping quality when one end is moved
//fprintf(stderr, "%d, %d\n", o_n, subo_n);
if (o_n == 1) {
if (subo_score == (uint64_t)-1) mapQ_p = 29; // no sub-optimal pair
else if ((subo_score>>32) - (o_score>>32) > s_mm * 10) mapQ_p = 23; // poor sub-optimal pair
else {
int n = subo_n > 255? 255 : subo_n;
mapQ_p = ((subo_score>>32) - (o_score>>32)) / 2 - g_log_n[n];
if (mapQ_p < 0) mapQ_p = 0;
}
}
if ((p[0]->pos == o_pos[0].x && p[0]->strand == (o_pos[0].y>>1&1)) && (p[1]->pos == o_pos[1].x && p[1]->strand == (o_pos[1].y>>1&1))) { // both ends not moved
if (p[0]->mapQ > 0 && p[1]->mapQ > 0) {
int mapQ = p[0]->mapQ + p[1]->mapQ;
if (mapQ > 60) mapQ = 60;
p[0]->mapQ = p[1]->mapQ = mapQ;
} else {
if (p[0]->mapQ == 0) p[0]->mapQ = (mapQ_p + 7 < p[1]->mapQ)? mapQ_p + 7 : p[1]->mapQ;
if (p[1]->mapQ == 0) p[1]->mapQ = (mapQ_p + 7 < p[0]->mapQ)? mapQ_p + 7 : p[0]->mapQ;
}
} else if (p[0]->pos == o_pos[0].x && p[0]->strand == (o_pos[0].y>>1&1)) { // [1] moved
p[1]->seQ = 0; p[1]->mapQ = p[0]->mapQ;
if (p[1]->mapQ > mapQ_p) p[1]->mapQ = mapQ_p;
} else if (p[1]->pos == o_pos[1].x && p[1]->strand == (o_pos[1].y>>1&1)) { // [0] moved
p[0]->seQ = 0; p[0]->mapQ = p[1]->mapQ;
if (p[0]->mapQ > mapQ_p) p[0]->mapQ = mapQ_p;
} else { // both ends moved
p[0]->seQ = p[1]->seQ = 0;
mapQ_p -= 20;
if (mapQ_p < 0) mapQ_p = 0;
p[0]->mapQ = p[1]->mapQ = mapQ_p;
}
__pairing_aux2(p[0], o_pos[0]);
__pairing_aux2(p[1], o_pos[1]);
}
return cnt_chg;
}
typedef struct {
kvec_t(bwt_aln1_t) aln;
} aln_buf_t;
int bwa_cal_pac_pos_pe(const bntseq_t *bns, const char *prefix, bwt_t *const _bwt, int n_seqs, bwa_seq_t *seqs[2], FILE *fp_sa[2], isize_info_t *ii,
const pe_opt_t *opt, const gap_opt_t *gopt, const isize_info_t *last_ii)
{
int i, j, cnt_chg = 0;
char str[1024];
bwt_t *bwt;
pe_data_t *d;
aln_buf_t *buf[2];
d = (pe_data_t*)calloc(1, sizeof(pe_data_t));
buf[0] = (aln_buf_t*)calloc(n_seqs, sizeof(aln_buf_t));
buf[1] = (aln_buf_t*)calloc(n_seqs, sizeof(aln_buf_t));
if (_bwt == 0) { // load forward SA
strcpy(str, prefix); strcat(str, ".bwt"); bwt = bwt_restore_bwt(str);
strcpy(str, prefix); strcat(str, ".sa"); bwt_restore_sa(str, bwt);
} else bwt = _bwt;
// SE
for (i = 0; i != n_seqs; ++i) {
bwa_seq_t *p[2];
for (j = 0; j < 2; ++j) {
int n_aln;
p[j] = seqs[j] + i;
p[j]->n_multi = 0;
p[j]->extra_flag |= SAM_FPD | (j == 0? SAM_FR1 : SAM_FR2);
err_fread_noeof(&n_aln, 4, 1, fp_sa[j]);
if (n_aln > kv_max(d->aln[j]))
kv_resize(bwt_aln1_t, d->aln[j], n_aln);
d->aln[j].n = n_aln;
err_fread_noeof(d->aln[j].a, sizeof(bwt_aln1_t), n_aln, fp_sa[j]);
kv_copy(bwt_aln1_t, buf[j][i].aln, d->aln[j]); // backup d->aln[j]
// generate SE alignment and mapping quality
bwa_aln2seq(n_aln, d->aln[j].a, p[j]);
if (p[j]->type == BWA_TYPE_UNIQUE || p[j]->type == BWA_TYPE_REPEAT) {
int strand;
int max_diff = gopt->fnr > 0.0? bwa_cal_maxdiff(p[j]->len, BWA_AVG_ERR, gopt->fnr) : gopt->max_diff;
p[j]->seQ = p[j]->mapQ = bwa_approx_mapQ(p[j], max_diff);
p[j]->pos = bwa_sa2pos(bns, bwt, p[j]->sa, p[j]->len + p[j]->ref_shift, &strand);
p[j]->strand = strand;
}
}
}
// infer isize
infer_isize(n_seqs, seqs, ii, opt->ap_prior, bwt->seq_len/2);
if (ii->avg < 0.0 && last_ii->avg > 0.0) *ii = *last_ii;
if (opt->force_isize) {
fprintf(stderr, "[%s] discard insert size estimate as user's request.\n", __func__);
ii->low = ii->high = 0; ii->avg = ii->std = -1.0;
}
// PE
for (i = 0; i != n_seqs; ++i) {
bwa_seq_t *p[2];
for (j = 0; j < 2; ++j) {
p[j] = seqs[j] + i;
kv_copy(bwt_aln1_t, d->aln[j], buf[j][i].aln);
}
if ((p[0]->type == BWA_TYPE_UNIQUE || p[0]->type == BWA_TYPE_REPEAT)
&& (p[1]->type == BWA_TYPE_UNIQUE || p[1]->type == BWA_TYPE_REPEAT))
{ // only when both ends mapped
pair64_t x;
int j, k;
long long n_occ[2];
for (j = 0; j < 2; ++j) {
n_occ[j] = 0;
for (k = 0; k < d->aln[j].n; ++k)
n_occ[j] += d->aln[j].a[k].l - d->aln[j].a[k].k + 1;
}
if (n_occ[0] > opt->max_occ || n_occ[1] > opt->max_occ) continue;
d->arr.n = 0;
for (j = 0; j < 2; ++j) {
for (k = 0; k < d->aln[j].n; ++k) {
bwt_aln1_t *r = d->aln[j].a + k;
bwtint_t l;
if (0 && r->l - r->k + 1 >= MIN_HASH_WIDTH) { // then check hash table
pair64_t key;
int ret;
key.x = r->k; key.y = r->l;
khint_t iter = kh_put(b128, g_hash, key, &ret);
if (ret) { // not in the hash table; ret must equal 1 as we never remove elements
poslist_t *z = &kh_val(g_hash, iter);
z->n = r->l - r->k + 1;
z->a = (bwtint_t*)malloc(sizeof(bwtint_t) * z->n);
for (l = r->k; l <= r->l; ++l) {
int strand;
z->a[l - r->k] = bwa_sa2pos(bns, bwt, l, p[j]->len + p[j]->ref_shift, &strand)<<1;
z->a[l - r->k] |= strand;
}
}
for (l = 0; l < kh_val(g_hash, iter).n; ++l) {
x.x = kh_val(g_hash, iter).a[l]>>1;
x.y = k<<2 | (kh_val(g_hash, iter).a[l]&1)<<1 | j;
kv_push(pair64_t, d->arr, x);
}
} else { // then calculate on the fly
for (l = r->k; l <= r->l; ++l) {
int strand;
x.x = bwa_sa2pos(bns, bwt, l, p[j]->len + p[j]->ref_shift, &strand);
x.y = k<<2 | strand<<1 | j;
kv_push(pair64_t, d->arr, x);
}
}
}
}
cnt_chg += pairing(p, d, opt, gopt->s_mm, ii);
}
if (opt->N_multi || opt->n_multi) {
for (j = 0; j < 2; ++j) {
if (p[j]->type != BWA_TYPE_NO_MATCH) {
int k, n_multi;
if (!(p[j]->extra_flag&SAM_FPP) && p[1-j]->type != BWA_TYPE_NO_MATCH) {
bwa_aln2seq_core(d->aln[j].n, d->aln[j].a, p[j], 0, p[j]->c1+p[j]->c2-1 > opt->N_multi? opt->n_multi : opt->N_multi);
} else bwa_aln2seq_core(d->aln[j].n, d->aln[j].a, p[j], 0, opt->n_multi);
for (k = 0, n_multi = 0; k < p[j]->n_multi; ++k) {
int strand;
bwt_multi1_t *q = p[j]->multi + k;
q->pos = bwa_sa2pos(bns, bwt, q->pos, p[j]->len + q->ref_shift, &strand);
q->strand = strand;
if (q->pos != p[j]->pos)
p[j]->multi[n_multi++] = *q;
}
p[j]->n_multi = n_multi;
}
}
}
}
// free
for (i = 0; i < n_seqs; ++i) {
kv_destroy(buf[0][i].aln);
kv_destroy(buf[1][i].aln);
}
free(buf[0]); free(buf[1]);
if (_bwt == 0) bwt_destroy(bwt);
kv_destroy(d->arr);
kv_destroy(d->pos[0]); kv_destroy(d->pos[1]);
kv_destroy(d->aln[0]); kv_destroy(d->aln[1]);
free(d);
return cnt_chg;
}
#define SW_MIN_MATCH_LEN 20
#define SW_MIN_MAPQ 17
// cnt = n_mm<<16 | n_gapo<<8 | n_gape
bwa_cigar_t *bwa_sw_core(bwtint_t l_pac, const ubyte_t *pacseq, int len, const ubyte_t *seq, int64_t *beg, int reglen, int *n_cigar, uint32_t *_cnt)
{
kswr_t r;
uint32_t *cigar32 = 0;
bwa_cigar_t *cigar = 0;
ubyte_t *ref_seq;
bwtint_t k, x, y, l;
int xtra, gscore;
int8_t mat[25];
bwa_fill_scmat(1, 3, mat);
// check whether there are too many N's
if (reglen < SW_MIN_MATCH_LEN || (int64_t)l_pac - *beg < len) return 0;
for (k = 0, x = 0; k < len; ++k)
if (seq[k] >= 4) ++x;
if ((float)x/len >= 0.25 || len - x < SW_MIN_MATCH_LEN) return 0;
// get reference subsequence
ref_seq = (ubyte_t*)calloc(reglen, 1);
for (k = *beg, l = 0; l < reglen && k < l_pac; ++k)
ref_seq[l++] = pacseq[k>>2] >> ((~k&3)<<1) & 3;
// do alignment
xtra = KSW_XSUBO | KSW_XSTART | (len < 250? KSW_XBYTE : 0);
r = ksw_align(len, (uint8_t*)seq, l, ref_seq, 5, mat, 5, 1, xtra, 0);
gscore = ksw_global(r.qe - r.qb + 1, &seq[r.qb], r.te - r.tb + 1, &ref_seq[r.tb], 5, mat, 5, 1, 50, n_cigar, &cigar32);
cigar = (bwa_cigar_t*)cigar32;
for (k = 0; k < *n_cigar; ++k)
cigar[k] = __cigar_create((cigar32[k]&0xf), (cigar32[k]>>4));
if (r.score < SW_MIN_MATCH_LEN || r.score2 == r.score || gscore != r.score) { // poor hit or tandem hits or weird alignment
free(cigar); free(ref_seq); *n_cigar = 0;
return 0;
}
// check whether the alignment is good enough
for (k = 0, x = y = 0; k < *n_cigar; ++k) {
bwa_cigar_t c = cigar[k];
if (__cigar_op(c) == FROM_M) x += __cigar_len(c), y += __cigar_len(c);
else if (__cigar_op(c) == FROM_D) x += __cigar_len(c);
else y += __cigar_len(c);
}
if (x < SW_MIN_MATCH_LEN || y < SW_MIN_MATCH_LEN) { // not good enough
free(cigar); free(ref_seq);
*n_cigar = 0;
return 0;
}
{ // update cigar and coordinate;
int start = r.qb, end = r.qe + 1;
*beg += r.tb;
cigar = (bwa_cigar_t*)realloc(cigar, sizeof(bwa_cigar_t) * (*n_cigar + 2));
if (start) {
memmove(cigar + 1, cigar, sizeof(bwa_cigar_t) * (*n_cigar));
cigar[0] = __cigar_create(3, start);
++(*n_cigar);
}
if (end < len) {
/*cigar[*n_cigar] = 3<<14 | (len - end);*/
cigar[*n_cigar] = __cigar_create(3, (len - end));
++(*n_cigar);
}
}
{ // set *cnt
int n_mm, n_gapo, n_gape;
n_mm = n_gapo = n_gape = 0;
x = r.tb; y = r.qb;
for (k = 0; k < *n_cigar; ++k) {
bwa_cigar_t c = cigar[k];
if (__cigar_op(c) == FROM_M) {
for (l = 0; l < (__cigar_len(c)); ++l)
if (ref_seq[x+l] < 4 && seq[y+l] < 4 && ref_seq[x+l] != seq[y+l]) ++n_mm;
x += __cigar_len(c), y += __cigar_len(c);
} else if (__cigar_op(c) == FROM_D) {
x += __cigar_len(c), ++n_gapo, n_gape += (__cigar_len(c)) - 1;
} else if (__cigar_op(c) == FROM_I) {
y += __cigar_len(c), ++n_gapo, n_gape += (__cigar_len(c)) - 1;
}
}
*_cnt = (uint32_t)n_mm<<16 | n_gapo<<8 | n_gape;
}
free(ref_seq);
return cigar;
}
ubyte_t *bwa_paired_sw(const bntseq_t *bns, const ubyte_t *_pacseq, int n_seqs, bwa_seq_t *seqs[2], const pe_opt_t *popt, const isize_info_t *ii)
{
ubyte_t *pacseq;
int i;
uint64_t n_tot[2], n_mapped[2];
// load reference sequence
if (_pacseq == 0) {
pacseq = (ubyte_t*)calloc(bns->l_pac/4+1, 1);
err_rewind(bns->fp_pac);
err_fread_noeof(pacseq, 1, bns->l_pac/4+1, bns->fp_pac);
} else pacseq = (ubyte_t*)_pacseq;
if (!popt->is_sw || ii->avg < 0.0) return pacseq;
// perform mate alignment
n_tot[0] = n_tot[1] = n_mapped[0] = n_mapped[1] = 0;
for (i = 0; i != n_seqs; ++i) {
bwa_seq_t *p[2];
p[0] = seqs[0] + i; p[1] = seqs[1] + i;
if ((p[0]->mapQ >= SW_MIN_MAPQ || p[1]->mapQ >= SW_MIN_MAPQ) && (p[0]->extra_flag&SAM_FPP) == 0) { // unpaired and one read has high mapQ
int k, n_cigar[2], is_singleton, mapQ = 0, mq_adjust[2];
int64_t beg[2], end[2];
bwa_cigar_t *cigar[2];
uint32_t cnt[2];
/* In the following, _pref points to the reference read
* which must be aligned; _pmate points to its mate which is
* considered to be modified. */
#define __set_rght_coor(_a, _b, _pref, _pmate) do { \
(_a) = (int64_t)_pref->pos + ii->avg - 3 * ii->std - _pmate->len * 1.5; \
(_b) = (_a) + 6 * ii->std + 2 * _pmate->len; \
if ((_a) < (int64_t)_pref->pos + _pref->len) (_a) = _pref->pos + _pref->len; \
if ((_b) > bns->l_pac) (_b) = bns->l_pac; \
} while (0)
#define __set_left_coor(_a, _b, _pref, _pmate) do { \
(_a) = (int64_t)_pref->pos + _pref->len - ii->avg - 3 * ii->std - _pmate->len * 0.5; \
(_b) = (_a) + 6 * ii->std + 2 * _pmate->len; \
if ((_a) < 0) (_a) = 0; \
if ((_b) > _pref->pos) (_b) = _pref->pos; \
} while (0)
#define __set_fixed(_pref, _pmate, _beg, _cnt) do { \
_pmate->type = BWA_TYPE_MATESW; \
_pmate->pos = _beg; \
_pmate->seQ = _pref->seQ; \
_pmate->strand = (popt->type == BWA_PET_STD)? 1 - _pref->strand : _pref->strand; \
_pmate->n_mm = _cnt>>16; _pmate->n_gapo = _cnt>>8&0xff; _pmate->n_gape = _cnt&0xff; \
_pmate->extra_flag |= SAM_FPP; \
_pref->extra_flag |= SAM_FPP; \
} while (0)
mq_adjust[0] = mq_adjust[1] = 255; // not effective
is_singleton = (p[0]->type == BWA_TYPE_NO_MATCH || p[1]->type == BWA_TYPE_NO_MATCH)? 1 : 0;
++n_tot[is_singleton];
cigar[0] = cigar[1] = 0;
n_cigar[0] = n_cigar[1] = 0;
if (popt->type != BWA_PET_STD) continue; // other types of pairing is not considered
for (k = 0; k < 2; ++k) { // p[1-k] is the reference read and p[k] is the read considered to be modified
ubyte_t *seq;
if (p[1-k]->type == BWA_TYPE_NO_MATCH) continue; // if p[1-k] is unmapped, skip
{ // note that popt->type == BWA_PET_STD always true; in older versions, there was a branch for color-space FF/RR reads
if (p[1-k]->strand == 0) { // then the mate is on the reverse strand and has larger coordinate
__set_rght_coor(beg[k], end[k], p[1-k], p[k]);
seq = p[k]->rseq;
} else { // then the mate is on forward stand and has smaller coordinate
__set_left_coor(beg[k], end[k], p[1-k], p[k]);
seq = p[k]->seq;
seq_reverse(p[k]->len, seq, 0); // because ->seq is reversed; this will reversed back shortly
}
}
// perform SW alignment
cigar[k] = bwa_sw_core(bns->l_pac, pacseq, p[k]->len, seq, &beg[k], end[k] - beg[k], &n_cigar[k], &cnt[k]);
if (cigar[k] && p[k]->type != BWA_TYPE_NO_MATCH) { // re-evaluate cigar[k]
int s_old, clip = 0, s_new;
if (__cigar_op(cigar[k][0]) == 3) clip += __cigar_len(cigar[k][0]);
if (__cigar_op(cigar[k][n_cigar[k]-1]) == 3) clip += __cigar_len(cigar[k][n_cigar[k]-1]);
s_old = (int)((p[k]->n_mm * 9 + p[k]->n_gapo * 13 + p[k]->n_gape * 2) / 3. * 8. + .499);
s_new = (int)(((cnt[k]>>16) * 9 + (cnt[k]>>8&0xff) * 13 + (cnt[k]&0xff) * 2 + clip * 3) / 3. * 8. + .499);
s_old += -4.343 * log(ii->ap_prior / bns->l_pac);
s_new += (int)(-4.343 * log(.5 * erfc(M_SQRT1_2 * 1.5) + .499)); // assume the mapped isize is 1.5\sigma
if (s_old < s_new) { // reject SW alignment
mq_adjust[k] = s_new - s_old;
free(cigar[k]); cigar[k] = 0; n_cigar[k] = 0;
} else mq_adjust[k] = s_old - s_new;
}
// now revserse sequence back such that p[*]->seq looks untouched
if (popt->type == BWA_PET_STD) {
if (p[1-k]->strand == 1) seq_reverse(p[k]->len, seq, 0);
} else {
if (p[1-k]->strand == 0) seq_reverse(p[k]->len, seq, 0);
}
}
k = -1; // no read to be changed
if (cigar[0] && cigar[1]) {
k = p[0]->mapQ < p[1]->mapQ? 0 : 1; // p[k] to be fixed
mapQ = abs(p[1]->mapQ - p[0]->mapQ);
} else if (cigar[0]) k = 0, mapQ = p[1]->mapQ;
else if (cigar[1]) k = 1, mapQ = p[0]->mapQ;
if (k >= 0 && p[k]->pos != beg[k]) {
++n_mapped[is_singleton];
{ // recalculate mapping quality
int tmp = (int)p[1-k]->mapQ - p[k]->mapQ/2 - 8;
if (tmp <= 0) tmp = 1;
if (mapQ > tmp) mapQ = tmp;
p[k]->mapQ = p[1-k]->mapQ = mapQ;
p[k]->seQ = p[1-k]->seQ = p[1-k]->seQ < mapQ? p[1-k]->seQ : mapQ;
if (p[k]->mapQ > mq_adjust[k]) p[k]->mapQ = mq_adjust[k];
if (p[k]->seQ > mq_adjust[k]) p[k]->seQ = mq_adjust[k];
}
// update CIGAR
free(p[k]->cigar); p[k]->cigar = cigar[k]; cigar[k] = 0;
p[k]->n_cigar = n_cigar[k];
// update the rest of information
__set_fixed(p[1-k], p[k], beg[k], cnt[k]);
}
free(cigar[0]); free(cigar[1]);
}
}
fprintf(stderr, "[bwa_paired_sw] %lld out of %lld Q%d singletons are mated.\n",
(long long)n_mapped[1], (long long)n_tot[1], SW_MIN_MAPQ);
fprintf(stderr, "[bwa_paired_sw] %lld out of %lld Q%d discordant pairs are fixed.\n",
(long long)n_mapped[0], (long long)n_tot[0], SW_MIN_MAPQ);
return pacseq;
}
void bwa_sai2sam_pe_core(const char *prefix, char *const fn_sa[2], char *const fn_fa[2], pe_opt_t *popt, const char *rg_line)
{
extern bwa_seqio_t *bwa_open_reads(int mode, const char *fn_fa);
int i, j, n_seqs, tot_seqs = 0;
bwa_seq_t *seqs[2];
bwa_seqio_t *ks[2];
clock_t t;
bntseq_t *bns;
FILE *fp_sa[2];
gap_opt_t opt, opt0;
khint_t iter;
isize_info_t last_ii; // this is for the last batch of reads
char str[1024], magic[2][4];
bwt_t *bwt;
uint8_t *pac;
// initialization
bwase_initialize(); // initialize g_log_n[] in bwase.c
pac = 0; bwt = 0;
for (i = 1; i != 256; ++i) g_log_n[i] = (int)(4.343 * log(i) + 0.5);
bns = bns_restore(prefix);
srand48(bns->seed);
fp_sa[0] = xopen(fn_sa[0], "r");
fp_sa[1] = xopen(fn_sa[1], "r");
g_hash = kh_init(b128);
last_ii.avg = -1.0;
err_fread_noeof(magic[0], 1, 4, fp_sa[0]);
err_fread_noeof(magic[1], 1, 4, fp_sa[1]);
if (strncmp(magic[0], SAI_MAGIC, 4) != 0 || strncmp(magic[1], SAI_MAGIC, 4) != 0) {
fprintf(stderr, "[E::%s] Unmatched SAI magic. Please re-run `aln' with the same version of bwa.\n", __func__);
exit(1);
}
err_fread_noeof(&opt, sizeof(gap_opt_t), 1, fp_sa[0]);
ks[0] = bwa_open_reads(opt.mode, fn_fa[0]);
opt0 = opt;
err_fread_noeof(&opt, sizeof(gap_opt_t), 1, fp_sa[1]); // overwritten!
ks[1] = bwa_open_reads(opt.mode, fn_fa[1]);
{ // for Illumina alignment only
if (popt->is_preload) {
strcpy(str, prefix); strcat(str, ".bwt"); bwt = bwt_restore_bwt(str);
strcpy(str, prefix); strcat(str, ".sa"); bwt_restore_sa(str, bwt);
pac = (ubyte_t*)calloc(bns->l_pac/4+1, 1);
err_rewind(bns->fp_pac);
err_fread_noeof(pac, 1, bns->l_pac/4+1, bns->fp_pac);
}
}
// core loop
bwa_print_sam_hdr(bns, rg_line);
while ((seqs[0] = bwa_read_seq(ks[0], 0x40000, &n_seqs, opt0.mode, opt0.trim_qual)) != 0) {
int cnt_chg;
isize_info_t ii;
ubyte_t *pacseq;
seqs[1] = bwa_read_seq(ks[1], 0x40000, &n_seqs, opt.mode, opt.trim_qual);
tot_seqs += n_seqs;
t = clock();
fprintf(stderr, "[bwa_sai2sam_pe_core] convert to sequence coordinate... \n");
cnt_chg = bwa_cal_pac_pos_pe(bns, prefix, bwt, n_seqs, seqs, fp_sa, &ii, popt, &opt, &last_ii);
fprintf(stderr, "[bwa_sai2sam_pe_core] time elapses: %.2f sec\n", (float)(clock() - t) / CLOCKS_PER_SEC); t = clock();
fprintf(stderr, "[bwa_sai2sam_pe_core] changing coordinates of %d alignments.\n", cnt_chg);
fprintf(stderr, "[bwa_sai2sam_pe_core] align unmapped mate...\n");
pacseq = bwa_paired_sw(bns, pac, n_seqs, seqs, popt, &ii);
fprintf(stderr, "[bwa_sai2sam_pe_core] time elapses: %.2f sec\n", (float)(clock() - t) / CLOCKS_PER_SEC); t = clock();
fprintf(stderr, "[bwa_sai2sam_pe_core] refine gapped alignments... ");
for (j = 0; j < 2; ++j)
bwa_refine_gapped(bns, n_seqs, seqs[j], pacseq);
fprintf(stderr, "%.2f sec\n", (float)(clock() - t) / CLOCKS_PER_SEC); t = clock();
if (pac == 0) free(pacseq);
fprintf(stderr, "[bwa_sai2sam_pe_core] print alignments... ");
for (i = 0; i < n_seqs; ++i) {
bwa_seq_t *p[2];
p[0] = seqs[0] + i; p[1] = seqs[1] + i;
if (p[0]->bc[0] || p[1]->bc[0]) {
strcat(p[0]->bc, p[1]->bc);
strcpy(p[1]->bc, p[0]->bc);
}
bwa_print_sam1(bns, p[0], p[1], opt.mode, opt.max_top2);
bwa_print_sam1(bns, p[1], p[0], opt.mode, opt.max_top2);
if (strcmp(p[0]->name, p[1]->name) != 0) err_fatal(__func__, "paired reads have different names: \"%s\", \"%s\"\n", p[0]->name, p[1]->name);
}
fprintf(stderr, "%.2f sec\n", (float)(clock() - t) / CLOCKS_PER_SEC); t = clock();
for (j = 0; j < 2; ++j)
bwa_free_read_seq(n_seqs, seqs[j]);
fprintf(stderr, "[bwa_sai2sam_pe_core] %d sequences have been processed.\n", tot_seqs);
last_ii = ii;
}
// destroy
bns_destroy(bns);
for (i = 0; i < 2; ++i) {
bwa_seq_close(ks[i]);
err_fclose(fp_sa[i]);
}
for (iter = kh_begin(g_hash); iter != kh_end(g_hash); ++iter)
if (kh_exist(g_hash, iter)) free(kh_val(g_hash, iter).a);
kh_destroy(b128, g_hash);
if (pac) {
free(pac); bwt_destroy(bwt);
}
}
int bwa_sai2sam_pe(int argc, char *argv[])
{
int c;
pe_opt_t *popt;
char *prefix, *rg_line = 0;
popt = bwa_init_pe_opt();
while ((c = getopt(argc, argv, "a:o:sPn:N:c:f:Ar:")) >= 0) {
switch (c) {
case 'r':
if ((rg_line = bwa_set_rg(optarg)) == 0) return 1;
break;
case 'a': popt->max_isize = atoi(optarg); break;
case 'o': popt->max_occ = atoi(optarg); break;
case 's': popt->is_sw = 0; break;
case 'P': popt->is_preload = 1; break;
case 'n': popt->n_multi = atoi(optarg); break;
case 'N': popt->N_multi = atoi(optarg); break;
case 'c': popt->ap_prior = atof(optarg); break;
case 'f': xreopen(optarg, "w", stdout); break;
case 'A': popt->force_isize = 1; break;
default: return 1;
}
}
if (optind + 5 > argc) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: bwa sampe [options] <prefix> <in1.sai> <in2.sai> <in1.fq> <in2.fq>\n\n");
fprintf(stderr, "Options: -a INT maximum insert size [%d]\n", popt->max_isize);
fprintf(stderr, " -o INT maximum occurrences for one end [%d]\n", popt->max_occ);
fprintf(stderr, " -n INT maximum hits to output for paired reads [%d]\n", popt->n_multi);
fprintf(stderr, " -N INT maximum hits to output for discordant pairs [%d]\n", popt->N_multi);
fprintf(stderr, " -c FLOAT prior of chimeric rate (lower bound) [%.1le]\n", popt->ap_prior);
fprintf(stderr, " -f FILE sam file to output results to [stdout]\n");
fprintf(stderr, " -r STR read group header line such as `@RG\\tID:foo\\tSM:bar' [null]\n");
fprintf(stderr, " -P preload index into memory (for base-space reads only)\n");
fprintf(stderr, " -s disable Smith-Waterman for the unmapped mate\n");
fprintf(stderr, " -A disable insert size estimate (force -s)\n\n");
fprintf(stderr, "Notes: 1. For SOLiD reads, <in1.fq> corresponds R3 reads and <in2.fq> to F3.\n");
fprintf(stderr, " 2. For reads shorter than 30bp, applying a smaller -o is recommended to\n");
fprintf(stderr, " to get a sensible speed at the cost of pairing accuracy.\n");
fprintf(stderr, "\n");
return 1;
}
if ((prefix = bwa_idx_infer_prefix(argv[optind])) == 0) {
fprintf(stderr, "[%s] fail to locate the index\n", __func__);
return 1;
}
bwa_sai2sam_pe_core(prefix, argv + optind + 1, argv + optind+3, popt, rg_line);
free(prefix); free(popt);
return 0;
}