forked from aaxwaz/Caterpillar-Tube-Pricing-Kaggle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metaBagging_CV.R
215 lines (170 loc) · 6.41 KB
/
metaBagging_CV.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
setwd('c:\\users\\1989\\desktop\\CAT\\FINAL\\CV_best\\metaBagging\\CV')
rm(list = ls())
require(xgboost)
require(Matrix)
require(TunePareto)
require(ROCR)
require(randomForest)
require(data.table)
options( java.parameters = "-Xmx3g" )
require(extraTrees)
CV_split <- function(tube_ids, K){
temp = data.frame(ids = tube_ids, num = 1:length(tube_ids))
ids_set = unique(tube_ids)
result = generateCVRuns(1:length(ids_set), ntimes = 1, nfold = K, stratified = F)
result = result[[1]]
final_list = list()
for(cv in 1:K){
final_list = c(final_list, list(temp[temp$ids %in% ids_set[result[[cv]]],]$num))
}
final_list
}
# meta-bagging sampling approach
bagging_split <- function(tube_ids, percentage){
temp = data.table(ids = tube_ids, num = 1:length(tube_ids))
setkey(temp, ids)
if(percentage == 100){ # with replacement
ids_set = unique(tube_ids)
bag_sample = sample(1:length(ids_set), length(ids_set), replace=T)
BAG = ids_set[bag_sample]
OOB = ids_set[-bag_sample]
bag_data = temp[BAG,allow.cartesian = TRUE]$num
oob_data = temp[OOB,allow.cartesian = TRUE]$num
}
else{ # w/o replacement
ids_set = unique(tube_ids)
bag_sample = sample(1:length(ids_set), percentage/100 * length(ids_set), replace=F)
BAG = ids_set[bag_sample]
OOB = ids_set[-bag_sample]
bag_data = temp[BAG,allow.cartesian = TRUE]$num
oob_data = temp[OOB,allow.cartesian = TRUE]$num
}
list(bag_data, oob_data)
}
evaluation = function(preds, actuals,min_limit = 0.0){
preds[preds<min_limit] = min_limit
n = length(preds)
diffs = log(preds + 1) - log(actuals+1)
sqrt(1/n*sum(diffs^2))
}
##### start CV ##### 20 trees: 0.220-0.222(w/o NN); 15 trees: 0.2197(w/ NN); only xgb: 0.229
# params
### params
bag_size = 30
K = 5
N_transform = 15
bagging_ratio = 85
depth = 7
rounds = 900
eta = 0.1
min_child_weight = 1
# ET
et_ntree = 5
et_mtry = 70
# rf
ntree = 15
mtry = 60
param = list(booster = 'gbtree',
"objective"="reg:linear",
'nthreads' = 4,
#'lambda' = 0.00005,
#'alpha' = 0.000001,
min_child_weight = min_child_weight,
#subsample = 0.7,
#gamma = 0.9,
#colsample_bytree = 0.8,
max.depth = depth,
eta = eta)
# load and process data
### Start !!
logrmse_set = rep(0, K)
logrmse_set_median = rep(0, K)
for(cv in 1:K){
valid_file = paste('CV_set_', as.character(cv), '.csv', sep='')
valid_df = read.csv(valid_file, stringsAsFactors = F)
if(exists('train_df')) rm(train_df)
for(rest in 1:5){
if(rest == cv) next
temp_name = paste('CV_set_', as.character(rest), '.csv', sep='')
temp_df = read.csv(temp_name)
if(exists('train_df'))
{
train_df = rbind(train_df, temp_df)
}
else
{
train_df = temp_df
}
}
# data transform
# take out tube_assembly_ids
train_tube_ids = as.character(train_df$tube_assembly_id)
train_df = subset(train_df, select = -tube_assembly_id)
valid_df = subset(valid_df, select = -tube_assembly_id)
# data process/ N transform
train_df = train_df^(1/N_transform)
train_df = as.data.frame(train_df)
valid_df = valid_df^(1/N_transform)
valid_df = as.data.frame(valid_df)
valid_df_cost = valid_df$cost # use as truth later
valid_df = subset(valid_df, select=-cost) # take out cost column
valid_fea_num = ncol(valid_df)
valid_df = cbind(valid_df, data.frame(et_pred=0)) # create new col et_pred for valid_df
valid_df = cbind(valid_df, data.frame(rf_pred=0)) # create new col rf_pred for valid_df
#valid_df = cbind(valid_df, data.frame(base_pred=0)) # create new col base_pred
# BAGGING START!
final_result = 0
for(b in 1:bag_size){
cat("\n\nBagging round: ", b, "\n")
temp_samples = bagging_split(train_tube_ids, bagging_ratio)
BAG_train = train_df[temp_samples[[1]],] # around 30158 rows
OOB_train = train_df[temp_samples[[2]],] # around 11136 rows
# base1 - rf
rf = randomForest(cost~., OOB_train, ntree = ntree, do.trace = 0, mtry = mtry)
rf_pred_BAG = predict(rf, BAG_train[,-ncol(BAG_train)]) # preditions on bag data, in log(1+x) level
rf_pred_valid = predict(rf, valid_df[,1:valid_fea_num]) # preditions on valid data, in log(1+x) level
# base3 - ET
et = extraTrees(x = OOB_train[,-ncol(OOB_train)], y = OOB_train$cost, ntree = et_ntree, numThreads = 4, mtry = et_mtry, numRandomCuts = 3)
et_pred_BAG = predict(et, BAG_train[,-ncol(BAG_train)])
et_pred_valid = predict(et, valid_df[,1:valid_fea_num])
# add in new col to BAG_train
col_insert = which(names(BAG_train) == 'cost')[1]-1 # the col before cost
BAG_train = cbind(BAG_train[,1:col_insert, drop=F], data.frame(et_pred=et_pred_BAG), data.frame(rf_pred=rf_pred_BAG),
BAG_train[,col_insert+1,drop=F])
# update test_df$rf_pred col
valid_df$et_pred = et_pred_valid
valid_df$rf_pred = rf_pred_valid
# prepare for xgb train&predict
train_matrix = sparse.model.matrix(~., data = BAG_train[,-ncol(BAG_train)]) # sparse matrix
valid_matrix = sparse.model.matrix(~., data = valid_df)
dtrain = xgb.DMatrix(train_matrix, label = BAG_train$cost)
bst = xgb.train(param, dtrain, nround = rounds, label = BAG_train$cost)
pred = predict(bst, valid_matrix)
pred[pred<0] = 0 # clipping 1
cat(pred[1:10]^N_transform)
final_result = cbind(final_result, pred)
}
final_result = final_result[,2:ncol(final_result)] # take out dummy col of zeros
cat("Total cols for final_result: ", ncol(final_result), "\n")
median_results = (apply(final_result, FUN=median, MARGIN=1))^N_transform
mean_results = (apply(final_result, FUN=mean, MARGIN=1))^N_transform
# clipping 2
min_limit = 0.1
median_results[median_results<min_limit] = min_limit
mean_results[mean_results<min_limit] = min_limit
temp1 = evaluation(mean_results, valid_df_cost^N_transform)
temp2 = evaluation(median_results, valid_df_cost^N_transform)
logrmse_set[cv] = temp1
logrmse_set_median[cv] = temp2
cat('\nMean result: ', temp1, ' Median result: ', temp2)
}
cat('\nMean: ')
print(logrmse_set)
cat("Avg is: ", mean(logrmse_set), " std: ", sd(logrmse_set), "\n")
cat('\nMedian: ')
print(logrmse_set_median)
cat("Avg is: ", mean(logrmse_set_median), " std: ", sd(logrmse_set_median), "\n")
### END CV!
### End!!
m = xgb.importance(train_matrix@Dimnames[[2]], model = bst)
write.csv(m, 'importance_85_15.csv')