forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memcontrol.c
3416 lines (3010 loc) · 86 KB
/
memcontrol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <[email protected]>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/mm_inline.h>
#include <linux/page_cgroup.h>
#include <linux/cpu.h>
#include "internal.h"
#include <asm/uaccess.h>
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
struct mem_cgroup *root_mem_cgroup __read_mostly;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account (0)
#endif
#define SOFTLIMIT_EVENTS_THRESH (1000)
/*
* Statistics for memory cgroup.
*/
enum mem_cgroup_stat_index {
/*
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
*/
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
MEM_CGROUP_STAT_NSTATS,
};
struct mem_cgroup_stat_cpu {
s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;
struct mem_cgroup_stat {
struct mem_cgroup_stat_cpu cpustat[0];
};
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
enum mem_cgroup_stat_index idx)
{
stat->count[idx] = 0;
}
static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
enum mem_cgroup_stat_index idx)
{
return stat->count[idx];
}
/*
* For accounting under irq disable, no need for increment preempt count.
*/
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
enum mem_cgroup_stat_index idx, int val)
{
stat->count[idx] += val;
}
static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
enum mem_cgroup_stat_index idx)
{
int cpu;
s64 ret = 0;
for_each_possible_cpu(cpu)
ret += stat->cpustat[cpu].count[idx];
return ret;
}
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
s64 ret;
ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
return ret;
}
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
/*
* spin_lock to protect the per cgroup LRU
*/
struct list_head lists[NR_LRU_LISTS];
unsigned long count[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
struct rb_node tree_node; /* RB tree node */
unsigned long long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *mem; /* Back pointer, we cannot */
/* use container_of */
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
struct mem_cgroup_lru_info {
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_zone {
struct rb_root rb_root;
spinlock_t lock;
};
struct mem_cgroup_tree_per_node {
struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
* we hit the water mark. May be even add a low water mark, such that
* no reclaim occurs from a cgroup at it's low water mark, this is
* a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for memory usage
*/
struct res_counter res;
/*
* the counter to account for mem+swap usage.
*/
struct res_counter memsw;
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
struct mem_cgroup_lru_info info;
/*
protect against reclaim related member.
*/
spinlock_t reclaim_param_lock;
int prev_priority; /* for recording reclaim priority */
/*
* While reclaiming in a hierarchy, we cache the last child we
* reclaimed from.
*/
int last_scanned_child;
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
unsigned long last_oom_jiffies;
atomic_t refcnt;
unsigned int swappiness;
/* set when res.limit == memsw.limit */
bool memsw_is_minimum;
/*
* statistics. This must be placed at the end of memcg.
*/
struct mem_cgroup_stat stat;
};
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
NR_CHARGE_TYPE,
};
/* only for here (for easy reading.) */
#define PCGF_CACHE (1UL << PCG_CACHE)
#define PCGF_USED (1UL << PCG_USED)
#define PCGF_LOCK (1UL << PCG_LOCK)
/* Not used, but added here for completeness */
#define PCGF_ACCT (1UL << PCG_ACCT)
/* for encoding cft->private value on file */
#define _MEM (0)
#define _MEMSWAP (1)
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
/*
* Reclaim flags for mem_cgroup_hierarchical_reclaim
*/
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
static void drain_all_stock_async(void);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
return &mem->css;
}
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
struct mem_cgroup *mem = pc->mem_cgroup;
int nid = page_cgroup_nid(pc);
int zid = page_cgroup_zid(pc);
if (!mem)
return NULL;
return mem_cgroup_zoneinfo(mem, nid, zid);
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz,
unsigned long long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_zone *mz_node;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess)
p = &(*p)->rb_left;
/*
* We can't avoid mem cgroups that are over their soft
* limit by the same amount
*/
else if (mz->usage_in_excess >= mz_node->usage_in_excess)
p = &(*p)->rb_right;
}
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
if (!mz->on_tree)
return;
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
spin_lock(&mctz->lock);
__mem_cgroup_remove_exceeded(mem, mz, mctz);
spin_unlock(&mctz->lock);
}
static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
bool ret = false;
int cpu;
s64 val;
struct mem_cgroup_stat_cpu *cpustat;
cpu = get_cpu();
cpustat = &mem->stat.cpustat[cpu];
val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
ret = true;
}
put_cpu();
return ret;
}
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
unsigned long long excess;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
int nid = page_to_nid(page);
int zid = page_zonenum(page);
mctz = soft_limit_tree_from_page(page);
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; mem; mem = parent_mem_cgroup(mem)) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
excess = res_counter_soft_limit_excess(&mem->res);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
spin_lock(&mctz->lock);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mem, mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
spin_unlock(&mctz->lock);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
int node, zone;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
for_each_node_state(node, N_POSSIBLE) {
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = mem_cgroup_zoneinfo(mem, node, zone);
mctz = soft_limit_tree_node_zone(node, zone);
mem_cgroup_remove_exceeded(mem, mz, mctz);
}
}
}
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct rb_node *rightmost = NULL;
struct mem_cgroup_per_zone *mz;
retry:
mz = NULL;
rightmost = rb_last(&mctz->rb_root);
if (!rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
if (!res_counter_soft_limit_excess(&mz->mem->res) ||
!css_tryget(&mz->mem->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct mem_cgroup_per_zone *mz;
spin_lock(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock(&mctz->lock);
return mz;
}
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
bool charge)
{
int val = (charge) ? 1 : -1;
struct mem_cgroup_stat *stat = &mem->stat;
struct mem_cgroup_stat_cpu *cpustat;
int cpu = get_cpu();
cpustat = &stat->cpustat[cpu];
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
put_cpu();
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
struct page_cgroup *pc,
bool charge)
{
int val = (charge) ? 1 : -1;
struct mem_cgroup_stat *stat = &mem->stat;
struct mem_cgroup_stat_cpu *cpustat;
int cpu = get_cpu();
cpustat = &stat->cpustat[cpu];
if (PageCgroupCache(pc))
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
else
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
if (charge)
__mem_cgroup_stat_add_safe(cpustat,
MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
else
__mem_cgroup_stat_add_safe(cpustat,
MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
put_cpu();
}
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
enum lru_list idx)
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
u64 total = 0;
for_each_online_node(nid)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
total += MEM_CGROUP_ZSTAT(mz, idx);
}
return total;
}
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
/*
* mm_update_next_owner() may clear mm->owner to NULL
* if it races with swapoff, page migration, etc.
* So this can be called with p == NULL.
*/
if (unlikely(!p))
return NULL;
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *mem = NULL;
if (!mm)
return NULL;
/*
* Because we have no locks, mm->owner's may be being moved to other
* cgroup. We use css_tryget() here even if this looks
* pessimistic (rather than adding locks here).
*/
rcu_read_lock();
do {
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!mem))
break;
} while (!css_tryget(&mem->css));
rcu_read_unlock();
return mem;
}
/*
* Call callback function against all cgroup under hierarchy tree.
*/
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
int (*func)(struct mem_cgroup *, void *))
{
int found, ret, nextid;
struct cgroup_subsys_state *css;
struct mem_cgroup *mem;
if (!root->use_hierarchy)
return (*func)(root, data);
nextid = 1;
do {
ret = 0;
mem = NULL;
rcu_read_lock();
css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
&found);
if (css && css_tryget(css))
mem = container_of(css, struct mem_cgroup, css);
rcu_read_unlock();
if (mem) {
ret = (*func)(mem, data);
css_put(&mem->css);
}
nextid = found + 1;
} while (!ret && css);
return ret;
}
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
return (mem == root_mem_cgroup);
}
/*
* Following LRU functions are allowed to be used without PCG_LOCK.
* Operations are called by routine of global LRU independently from memcg.
* What we have to take care of here is validness of pc->mem_cgroup.
*
* Changes to pc->mem_cgroup happens when
* 1. charge
* 2. moving account
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
* It is added to LRU before charge.
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
* When moving account, the page is not on LRU. It's isolated.
*/
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/* can happen while we handle swapcache. */
if (!TestClearPageCgroupAcctLRU(pc))
return;
VM_BUG_ON(!pc->mem_cgroup);
/*
* We don't check PCG_USED bit. It's cleared when the "page" is finally
* removed from global LRU.
*/
mz = page_cgroup_zoneinfo(pc);
MEM_CGROUP_ZSTAT(mz, lru) -= 1;
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
VM_BUG_ON(list_empty(&pc->lru));
list_del_init(&pc->lru);
return;
}
void mem_cgroup_del_lru(struct page *page)
{
mem_cgroup_del_lru_list(page, page_lru(page));
}
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
/* unused or root page is not rotated. */
if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
return;
mz = page_cgroup_zoneinfo(pc);
list_move(&pc->lru, &mz->lists[lru]);
}
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
VM_BUG_ON(PageCgroupAcctLRU(pc));
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
if (!PageCgroupUsed(pc))
return;
mz = page_cgroup_zoneinfo(pc);
MEM_CGROUP_ZSTAT(mz, lru) += 1;
SetPageCgroupAcctLRU(pc);
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
list_add(&pc->lru, &mz->lists[lru]);
}
/*
* At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
* lru because the page may.be reused after it's fully uncharged (because of
* SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
* it again. This function is only used to charge SwapCache. It's done under
* lock_page and expected that zone->lru_lock is never held.
*/
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
{
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/*
* Forget old LRU when this page_cgroup is *not* used. This Used bit
* is guarded by lock_page() because the page is SwapCache.
*/
if (!PageCgroupUsed(pc))
mem_cgroup_del_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/* link when the page is linked to LRU but page_cgroup isn't */
if (PageLRU(page) && !PageCgroupAcctLRU(pc))
mem_cgroup_add_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
void mem_cgroup_move_lists(struct page *page,
enum lru_list from, enum lru_list to)
{
if (mem_cgroup_disabled())
return;
mem_cgroup_del_lru_list(page, from);
mem_cgroup_add_lru_list(page, to);
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
int ret;
struct mem_cgroup *curr = NULL;
task_lock(task);
rcu_read_lock();
curr = try_get_mem_cgroup_from_mm(task->mm);
rcu_read_unlock();
task_unlock(task);
if (!curr)
return 0;
/*
* We should check use_hierarchy of "mem" not "curr". Because checking
* use_hierarchy of "curr" here make this function true if hierarchy is
* enabled in "curr" and "curr" is a child of "mem" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "mem").
*/
if (mem->use_hierarchy)
ret = css_is_ancestor(&curr->css, &mem->css);
else
ret = (curr == mem);
css_put(&curr->css);
return ret;
}
/*
* prev_priority control...this will be used in memory reclaim path.
*/
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
int prev_priority;
spin_lock(&mem->reclaim_param_lock);
prev_priority = mem->prev_priority;
spin_unlock(&mem->reclaim_param_lock);
return prev_priority;
}
void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
spin_lock(&mem->reclaim_param_lock);
if (priority < mem->prev_priority)
mem->prev_priority = priority;
spin_unlock(&mem->reclaim_param_lock);
}
void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
spin_lock(&mem->reclaim_param_lock);
mem->prev_priority = priority;
spin_unlock(&mem->reclaim_param_lock);
}
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
{
unsigned long active;
unsigned long inactive;
unsigned long gb;
unsigned long inactive_ratio;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
if (present_pages) {
present_pages[0] = inactive;
present_pages[1] = active;
}
return inactive_ratio;
}
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
unsigned long present_pages[2];
unsigned long inactive_ratio;
inactive_ratio = calc_inactive_ratio(memcg, present_pages);
inactive = present_pages[0];
active = present_pages[1];
if (inactive * inactive_ratio < active)
return 1;
return 0;
}
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
return (active > inactive);
}
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
struct zone *zone,
enum lru_list lru)
{
int nid = zone->zone_pgdat->node_id;
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
return MEM_CGROUP_ZSTAT(mz, lru);
}
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
struct zone *zone)
{
int nid = zone->zone_pgdat->node_id;
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
return &mz->reclaim_stat;
}
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return NULL;
pc = lookup_page_cgroup(page);
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
if (!PageCgroupUsed(pc))
return NULL;
mz = page_cgroup_zoneinfo(pc);
if (!mz)
return NULL;
return &mz->reclaim_stat;
}
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
struct list_head *dst,
unsigned long *scanned, int order,
int mode, struct zone *z,
struct mem_cgroup *mem_cont,
int active, int file)
{
unsigned long nr_taken = 0;
struct page *page;
unsigned long scan;
LIST_HEAD(pc_list);
struct list_head *src;
struct page_cgroup *pc, *tmp;
int nid = z->zone_pgdat->node_id;
int zid = zone_idx(z);
struct mem_cgroup_per_zone *mz;
int lru = LRU_FILE * file + active;
int ret;
BUG_ON(!mem_cont);
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
src = &mz->lists[lru];
scan = 0;
list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
if (scan >= nr_to_scan)
break;
page = pc->page;
if (unlikely(!PageCgroupUsed(pc)))
continue;
if (unlikely(!PageLRU(page)))
continue;
scan++;
ret = __isolate_lru_page(page, mode, file);
switch (ret) {
case 0:
list_move(&page->lru, dst);
mem_cgroup_del_lru(page);
nr_taken++;
break;
case -EBUSY:
/* we don't affect global LRU but rotate in our LRU */
mem_cgroup_rotate_lru_list(page, page_lru(page));
break;
default:
break;
}
}
*scanned = scan;
return nr_taken;
}
#define mem_cgroup_from_res_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
if (do_swap_account) {
if (res_counter_check_under_limit(&mem->res) &&
res_counter_check_under_limit(&mem->memsw))
return true;
} else
if (res_counter_check_under_limit(&mem->res))
return true;
return false;
}
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
struct cgroup *cgrp = memcg->css.cgroup;
unsigned int swappiness;
/* root ? */
if (cgrp->parent == NULL)
return vm_swappiness;
spin_lock(&memcg->reclaim_param_lock);
swappiness = memcg->swappiness;
spin_unlock(&memcg->reclaim_param_lock);
return swappiness;
}
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
int *val = data;
(*val)++;
return 0;
}