-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_statistic.py
40 lines (27 loc) · 1.24 KB
/
dataset_statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import datasets
import os
from transformers import AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("/data/yuanhang/topic_memory/tokenizer/_data_yuanhang_pretrained_model_prajjwal1_bert-small_SC_EC")
dataset_name = "so_java"
data = datasets.load_from_disk(os.path.join(dataset_name, "string_train.dataset"))
for column_name in ['body', 'answers', 'title']:
this_column = data[column_name]
whole_len = 0
column_len = len(this_column)
max_len = 0
now_count = 0
step = 1000
while now_count < column_len:
this_part_column = this_column[now_count:(now_count+step)]
real_step = len(this_part_column)
now_count += real_step
encoded_text = tokenizer(this_part_column, padding=True, verbose=False, add_special_tokens=True, return_tensors='pt')
attention_mask = encoded_text['attention_mask']
this_part_len = torch.sum(attention_mask, dim=-1)
max_len = max_len if max_len > torch.max(this_part_len).item() else torch.max(this_part_len).item()
whole_len += torch.sum(this_part_len).item()
print(f"\r{now_count}/{column_len}", end="")
print()
print(f"{column_name}, Max Len {max_len}, Average len {whole_len/column_len}")
print()