Skip to content

A Keras implementation of YOLOv3 (Tensorflow backend)

License

Notifications You must be signed in to change notification settings

ytianxing/keras-yolo3

Repository files navigation

keras-yolo3

license

Introduction

A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K.


Quick Start

  1. Download YOLOv3 weights from YOLO website.
  2. Convert the Darknet YOLO model to a Keras model.
  3. Run YOLO detection.
wget https://pjreddie.com/media/files/yolov3.weights
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
python yolo.py   OR   python yolo_video.py

Training

  1. Generate your own annotation file.

One row for one image;

Row format: image_file_path box1 box2 ... boxN;

Box format: x_min,y_min,x_max,y_max,class_id (no space).

For VOC dataset, try python voc_annotation.py

  1. Generate your own class names file.

  2. Modify train.py and start training.

python train.py

You will get the trained model model_data/my_yolo.h5.

About

A Keras implementation of YOLOv3 (Tensorflow backend)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%