forked from kennymckormick/pyskl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathntu_preproc.py
200 lines (166 loc) · 6.8 KB
/
ntu_preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import copy as cp
import multiprocessing as mp
import numpy as np
import os
import os.path as osp
from mmcv import dump
from tqdm import tqdm
from pyskl.smp import mrlines
eps = 1e-3
def parse_skeleton_file(ske_name, root='nturgb+d_skeletons'):
ske_file = osp.join(root, ske_name + '.skeleton')
lines = mrlines(ske_file)
idx = 0
num_frames = int(lines[0])
num_joints = 25
idx += 1
body_data = dict()
fidx = 0
for f in range(num_frames):
num_bodies = int(lines[idx])
idx += 1
if num_bodies == 0:
continue
for b in range(num_bodies):
bodyID = int(lines[idx].split()[0])
if bodyID not in body_data:
kpt = []
body_data[bodyID] = dict(kpt=kpt, start=fidx)
idx += 1
assert int(lines[idx]) == 25
idx += 1
joints = np.zeros((25, 3), dtype=np.float32)
for j in range(num_joints):
line = lines[idx].split()
joints[j, :3] = np.array(line[:3], dtype=np.float32)
idx += 1
body_data[bodyID]['kpt'].append(joints)
fidx += 1
for k in body_data:
body_data[k]['motion'] = np.sum(np.var(np.vstack(body_data[k]['kpt']), axis=0))
body_data[k]['kpt'] = np.stack(body_data[k]['kpt'])
assert idx == len(lines)
return body_data
def spread_denoising(body_data_list):
wh_ratio = 0.8
spnoise_ratio = 0.69754
def get_valid_frames(kpt):
valid_frames = []
for i in range(kpt.shape[0]):
x, y = kpt[i, :, 0], kpt[i, :, 1]
if (x.max() - x.min()) <= wh_ratio * (y.max() - y.min()):
valid_frames.append(i)
return valid_frames
for item in body_data_list:
valid_frames = get_valid_frames(item['kpt'])
if len(valid_frames) == item['kpt'].shape[0]:
item['flag'] = True
continue
ratio = len(valid_frames) / item['kpt'].shape[0]
if 1 - ratio >= spnoise_ratio:
item['flag'] = False
else:
item['flag'] = True
item['motion'] = min(item['motion'],
np.sum(np.var(item['kpt'][valid_frames].reshape(-1, 3), axis=0)))
body_data_list = [item for item in body_data_list if item['flag']]
assert len(body_data_list) >= 1
_ = [item.pop('flag') for item in body_data_list]
body_data_list.sort(key=lambda x: -x['motion'])
return body_data_list
def non_zero(kpt):
s = 0
e = kpt.shape[1]
while np.sum(np.abs(kpt[:, s])) < eps:
s += 1
while np.sum(np.abs(kpt[:, e - 1])) < eps:
e -= 1
return kpt[:, s: e]
def gen_keypoint_array(body_data):
length_threshold = 11
body_data = cp.deepcopy(list(body_data.values()))
body_data.sort(key=lambda x: -x['motion'])
if len(body_data) == 1:
return body_data[0]['kpt'][None]
else:
body_data = [item for item in body_data if item['kpt'].shape[0] > length_threshold]
if len(body_data) == 1:
return body_data[0]['kpt'][None]
body_data = spread_denoising(body_data)
if len(body_data) == 1:
return body_data[0]['kpt'][None]
max_fidx = 0
for item in body_data:
max_fidx = max(max_fidx, item['start'] + item['kpt'].shape[0])
keypoint = np.zeros((2, max_fidx, 25, 3), np.float32)
s1, e1, s2, e2 = body_data[0]['start'], body_data[0]['start'] + body_data[0]['kpt'].shape[0], 0, 0
keypoint[0, s1: e1] = body_data[0]['kpt']
for item in body_data[1:]:
s, e = item['start'], item['start'] + item['kpt'].shape[0]
if max(s1, s) >= min(e1, e):
keypoint[0, s: e] = item['kpt']
s1, e1 = min(s, s1), max(e, e1)
elif max(s2, s) >= min(e2, e):
keypoint[1, s: e] = item['kpt']
s2, e2 = min(s, s2), max(e, e2)
keypoint = non_zero(keypoint)
if np.sum(np.abs(keypoint[0, 0, 1])) < eps and np.sum(np.abs(keypoint[1, 0, 1])) > eps:
keypoint = keypoint[::-1]
return keypoint
root = 'nturgb+d_skeletons'
skeleton_files = os.listdir(root)
names = [x.split('.')[0] for x in skeleton_files]
names.sort()
missing = mrlines('ntu120_missing.txt')
missing = set(missing)
names = [x for x in names if x not in missing]
extended = False
for name in names:
if int(name.split('A')[-1]) > 60:
extended = True
print('NTURGB+D 120 skeleton files detected, will generate both ntu60_3danno.pkl and ntu120_3danno.pkl. ')
break
if not extended:
print('NTURGB+D 120 skeleton files not detected, will only generate ntu60_3danno.pkl. ')
def gen_anno(name):
body_data = parse_skeleton_file(name, root)
if len(body_data) == 0:
return None
keypoint = gen_keypoint_array(body_data).astype(np.float16)
label = int(name.split('A')[-1]) - 1
total_frames = keypoint.shape[1]
return dict(frame_dir=name, label=label, keypoint=keypoint, total_frames=total_frames)
anno_dict = {}
num_process = 1
if num_process == 1:
# Each annotations has 4 keys: frame_dir, label, keypoint, total_frames
for name in tqdm(names):
anno_dict[name] = gen_anno(name)
else:
pool = mp.Pool(num_process)
annotations = pool.map(gen_anno, names)
pool.close()
for anno in annotations:
anno_dict[anno['frame_dir']] = anno
names = [x for x in names if anno_dict is not None]
training_subjects = [
1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35,
38, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 70, 74, 78,
80, 81, 82, 83, 84, 85, 86, 89, 91, 92, 93, 94, 95, 97, 98, 100, 103
]
if extended:
xsub_train = [name for name in names if int(name.split('P')[1][:3]) in training_subjects]
xsub_val = [name for name in names if int(name.split('P')[1][:3]) not in training_subjects]
xset_train = [name for name in names if int(name.split('S')[1][:3]) % 2 == 0]
xset_val = [name for name in names if int(name.split('S')[1][:3]) % 2 == 1]
split = dict(xsub_train=xsub_train, xsub_val=xsub_val, xset_train=xset_train, xset_val=xset_val)
annotations = [anno_dict[name] for name in names]
dump(dict(split=split, annotations=annotations), 'ntu120_3danno.pkl')
names = [name for name in names if int(name.split('A')[-1]) <= 60]
xsub_train = [name for name in names if int(name.split('P')[1][:3]) in training_subjects]
xsub_val = [name for name in names if int(name.split('P')[1][:3]) not in training_subjects]
xview_train = [name for name in names if 'C001' not in name]
xview_val = [name for name in names if 'C001' in name]
split = dict(xsub_train=xsub_train, xsub_val=xsub_val, xview_train=xview_train, xview_val=xview_val)
annotations = [anno_dict[name] for name in names]
dump(dict(split=split, annotations=annotations), 'ntu60_3danno.pkl')