-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtask.py
289 lines (227 loc) · 9.42 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright 2016 Google Inc. All Rights Reserved. Licensed under the Apache
# License, Version 2.0 (the "License"); you may not use this file except in
# compliance with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import argparse
import tensorflow as tf
from tensorflow.contrib.learn.python.learn import learn_runner
from tensorflow.contrib.learn.python.learn.datasets import base
from tensorflow.contrib.learn.python.learn.utils import input_fn_utils
from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils
tf.logging.set_verbosity(tf.logging.INFO) # Set to INFO for tracking training, default is WARN. ERROR for least messages
print("Using TensorFlow version %s" % (tf.__version__))
CONTINUOUS_COLUMNS = ["I"+str(i) for i in range(1,14)] # 1-13 inclusive
CATEGORICAL_COLUMNS = ["C"+str(i) for i in range(1,27)] # 1-26 inclusive
LABEL_COLUMN = ["clicked"]
TRAIN_DATA_COLUMNS = LABEL_COLUMN + CONTINUOUS_COLUMNS + CATEGORICAL_COLUMNS
FEATURE_COLUMNS = CONTINUOUS_COLUMNS + CATEGORICAL_COLUMNS
BATCH_SIZE = 40
def generate_input_fn(filename, batch_size=BATCH_SIZE):
def _input_fn():
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TextLineReader()
# Reads out batch_size number of lines
key, value = reader.read_up_to(filename_queue, num_records=batch_size)
# 1 int label, 13 ints, 26 strings
cont_defaults = [ [0] for i in range(1,14) ]
cate_defaults = [ [" "] for i in range(1,27) ]
label_defaults = [ [0] ]
column_headers = TRAIN_DATA_COLUMNS
record_defaults = label_defaults + cont_defaults + cate_defaults
# Decode CSV data that was just read out.
columns = tf.decode_csv(
value, record_defaults=record_defaults)
# features is a dictionary that maps from column names to tensors of the data.
# income_bracket is the last column of the data. Note that this is NOT a dict.
all_columns = dict(zip(column_headers, columns))
# Save the label column
# dict.pop() returns the popped array of label values
labels = all_columns.pop(LABEL_COLUMN[0])
# the remaining columns are our features
features = all_columns
# Sparse categorical features must be represented with an additional dimension.
# There is no additional work needed for the Continuous columns; they are the unaltered columns.
# See docs for tf.SparseTensor for more info
for feature_name in CATEGORICAL_COLUMNS:
features[feature_name] = tf.expand_dims(features[feature_name], -1)
return features, labels
return _input_fn
def build_feature_cols():
# Sparse base columns.
wide_columns = []
for name in CATEGORICAL_COLUMNS:
wide_columns.append(tf.contrib.layers.sparse_column_with_hash_bucket(name, hash_bucket_size=1000))
# Continuous base columns.
deep_columns = []
for name in CONTINUOUS_COLUMNS:
deep_columns.append(tf.contrib.layers.real_valued_column(name))
# No transformations.
# Embed wide columns into deep columns
for col in wide_columns:
deep_columns.append(tf.contrib.layers.embedding_column(col, dimension=8))
return wide_columns, deep_columns
def build_model(model_type, model_dir, wide_columns, deep_columns):
runconfig = tf.contrib.learn.RunConfig(
save_checkpoints_secs=120,
save_checkpoints_steps = None,
gpu_memory_fraction = 0.8
)
m = None
# Linear Classifier
if model_type == 'WIDE':
m = tf.contrib.learn.LinearClassifier(
config=runconfig,
model_dir=model_dir,
feature_columns=wide_columns)
# Deep Neural Net Classifier
elif model_type == 'DEEP':
m = tf.contrib.learn.DNNClassifier(
config=runconfig,
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=[100, 70, 50, 25])
# Combined Linear and Deep Classifier
elif model_type == 'WIDE_AND_DEEP':
m = tf.contrib.learn.DNNLinearCombinedClassifier(
config=runconfig,
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[100, 70, 50, 25])
return m
def build_estimator(model_type='WIDE_AND_DEEP', model_dir=None):
if model_dir is None:
model_dir = 'models/model_' + model_type + '_' + str(int(time.time()))
print("Model directory = %s" % model_dir)
wide_columns, deep_columns = build_feature_cols()
m = build_model(model_type, model_dir, wide_columns, deep_columns)
print('estimator built')
return m
# All categorical columns are strings for this dataset
def column_to_dtype(column):
if column in CATEGORICAL_COLUMNS:
return tf.string
else:
return tf.float32
"""
This function maps input columns (feature_placeholders) to
tensors that can be inputted into the graph
(similar in purpose to the output of our input functions)
In this particular case, we need to accomodate the sparse fields (strings)
so we have to do a slight modification to expand their dimensions,
just like in the input functions
"""
def serving_input_fn():
feature_placeholders = {
column: tf.placeholder(column_to_dtype(column), [None])
for column in FEATURE_COLUMNS
}
# DNNCombinedLinearClassifier expects rank 2 Tensors,
# but inputs should be rank 1, so that we can provide
# scalars to the server
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return input_fn_utils.InputFnOps(
features, # input into graph
None,
feature_placeholders # tensor input converted from request
)
def generate_experiment(output_dir, train_file, test_file, model_type):
def _experiment_fn(output_dir):
batch_size = 40 # make it larger for large datasets: 40, 400, 4000
train_input_fn = generate_input_fn(train_file, batch_size)
eval_input_fn = generate_input_fn(test_file, batch_size)
my_model = build_estimator(model_type=model_type,
model_dir=output_dir)
experiment = tf.contrib.learn.Experiment(
my_model,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=1000
,
export_strategies=[saved_model_export_utils.make_export_strategy(
serving_input_fn,
default_output_alternative_key=None
)]
)
return experiment
return _experiment_fn
def train_and_eval(job_dir=None):
print("Begin training and evaluation")
# if local eval and no args passed, default
if job_dir is None: job_dir = 'models/'
# Ensure path has a '/' at the end
if job_dir[-1] != '/': job_dir += '/'
gcs_base = 'https://storage.googleapis.com/' # No need to change
# small_version, medium_version, large_version
# Note: large_version is 2.7GB and medium_version is 273MB
gcs_path = 'dataset-uploader/criteo-kaggle/small_version/' # Path to the folder with the files
trainfile = 'train.csv'
testfile = 'eval.csv'
local_path = 'dataset_files'
train_file = base.maybe_download(
trainfile, local_path, gcs_base + gcs_path + trainfile)
test_file = base.maybe_download(
testfile, local_path, gcs_base + gcs_path + testfile)
training_mode = 'learn_runner'
train_steps = 1000
test_steps = 100
model_type = 'DEEP'
model_dir = job_dir + 'model_' + model_type + '_' + str(int(time.time()))
print("Saving model checkpoints to " + model_dir)
export_dir = model_dir + '/exports'
# Manually train and export model
if training_mode == 'manual':
# In this function, editing below here is unlikely to be needed
m = build_estimator(model_type, model_dir)
m.fit(input_fn=generate_input_fn(train_file), steps=train_steps)
print('fit done')
results = m.evaluate(input_fn=generate_input_fn(test_file), steps=test_steps)
print('evaluate done')
print('Accuracy: %s' % results['accuracy'])
export_folder = m.export_savedmodel(
export_dir_base = export_dir,
input_fn=serving_input_fn
)
print('Model exported to ' + export_dir)
elif training_mode == 'learn_runner':
# use learn_runner
experiment_fn = generate_experiment(
model_dir, train_file, test_file, model_type)
learn_runner.run(experiment_fn, model_dir)
def version_is_less_than(a, b):
a_parts = a.split('.')
b_parts = b.split('.')
for i in range(len(a_parts)):
if int(a_parts[i]) < int(b_parts[i]):
print('{} < {}, version_is_less_than() returning False'.format(
a_parts[i], b_parts[i]))
return True
return False
def get_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
'--job-dir',
help='GCS location to write checkpoints and export models',
required=False
)
return parser
if __name__ == "__main__":
print("TensorFlow version {}".format(tf.__version__))
required_tf_version = '1.0.0'
if version_is_less_than(tf.__version__ , required_tf_version):
raise ValueError('This code requires tensorflow >= ' + str(required_tf_version))
parser = get_arg_parser()
args = parser.parse_args()
train_and_eval(args.job_dir)