forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombinatorics.jl
346 lines (296 loc) · 8.29 KB
/
combinatorics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Factorials
const _fact_table64 = Vector{Int64}(undef, 20)
_fact_table64[1] = 1
for n in 2:20
_fact_table64[n] = _fact_table64[n-1] * n
end
const _fact_table128 = Vector{UInt128}(undef, 34)
_fact_table128[1] = 1
for n in 2:34
_fact_table128[n] = _fact_table128[n-1] * n
end
function factorial_lookup(n::Integer, table, lim)
n < 0 && throw(DomainError(n, "`n` must not be negative."))
n > lim && throw(OverflowError(string(n, " is too large to look up in the table; consider using `factorial(big(", n, "))` instead")))
n == 0 && return one(n)
@inbounds f = table[n]
return oftype(n, f)
end
factorial(n::Int128) = factorial_lookup(n, _fact_table128, 33)
factorial(n::UInt128) = factorial_lookup(n, _fact_table128, 34)
factorial(n::Union{Int64,UInt64}) = factorial_lookup(n, _fact_table64, 20)
if Int === Int32
factorial(n::Union{Int8,UInt8,Int16,UInt16}) = factorial(Int32(n))
factorial(n::Union{Int32,UInt32}) = factorial_lookup(n, _fact_table64, 12)
else
factorial(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32}) = factorial(Int64(n))
end
# Basic functions for working with permutations
@inline function _foldoneto(op, acc, ::Val{N}) where N
@assert N::Integer > 0
if @generated
quote
acc_0 = acc
Base.Cartesian.@nexprs $N i -> acc_{i} = op(acc_{i-1}, i)
return $(Symbol(:acc_, N))
end
else
for i in 1:N
acc = op(acc, i)
end
return acc
end
end
"""
isperm(v) -> Bool
Return `true` if `v` is a valid permutation.
# Examples
```jldoctest
julia> isperm([1; 2])
true
julia> isperm([1; 3])
false
```
"""
isperm(A) = _isperm(A)
function _isperm(A)
n = length(A)
used = falses(n)
for a in A
(0 < a <= n) && (used[a] ⊻= true) || return false
end
true
end
isperm(p::Tuple{}) = true
isperm(p::Tuple{Int}) = p[1] == 1
isperm(p::Tuple{Int,Int}) = ((p[1] == 1) & (p[2] == 2)) | ((p[1] == 2) & (p[2] == 1))
function isperm(P::Tuple)
valn = Val(length(P))
_foldoneto(true, valn) do b,i
s = _foldoneto(false, valn) do s, j
s || P[j]==i
end
b&s
end
end
isperm(P::Any16) = _isperm(P)
# swap columns i and j of a, in-place
function swapcols!(a::AbstractMatrix, i, j)
i == j && return
cols = axes(a,2)
@boundscheck i in cols || throw(BoundsError(a, (:,i)))
@boundscheck j in cols || throw(BoundsError(a, (:,j)))
for k in axes(a,1)
@inbounds a[k,i],a[k,j] = a[k,j],a[k,i]
end
end
# like permute!! applied to each row of a, in-place in a (overwriting p).
function permutecols!!(a::AbstractMatrix, p::AbstractVector{<:Integer})
require_one_based_indexing(a, p)
count = 0
start = 0
while count < length(p)
ptr = start = findnext(!iszero, p, start+1)::Int
next = p[start]
count += 1
while next != start
swapcols!(a, ptr, next)
p[ptr] = 0
ptr = next
next = p[next]
count += 1
end
p[ptr] = 0
end
a
end
function permute!!(a, p::AbstractVector{<:Integer})
require_one_based_indexing(a, p)
count = 0
start = 0
while count < length(a)
ptr = start = findnext(!iszero, p, start+1)::Int
temp = a[start]
next = p[start]
count += 1
while next != start
a[ptr] = a[next]
p[ptr] = 0
ptr = next
next = p[next]
count += 1
end
a[ptr] = temp
p[ptr] = 0
end
a
end
"""
permute!(v, p)
Permute vector `v` in-place, according to permutation `p`. No checking is done
to verify that `p` is a permutation.
To return a new permutation, use `v[p]`. Note that this is generally faster than
`permute!(v,p)` for large vectors.
See also [`invpermute!`](@ref).
# Examples
```jldoctest
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Vector{Int64}:
1
4
3
1
```
"""
permute!(a, p::AbstractVector) = permute!!(a, copymutable(p))
function invpermute!!(a, p::AbstractVector{<:Integer})
require_one_based_indexing(a, p)
count = 0
start = 0
while count < length(a)
start = findnext(!iszero, p, start+1)::Int
temp = a[start]
next = p[start]
count += 1
while next != start
temp_next = a[next]
a[next] = temp
temp = temp_next
ptr = p[next]
p[next] = 0
next = ptr
count += 1
end
a[next] = temp
p[next] = 0
end
a
end
"""
invpermute!(v, p)
Like [`permute!`](@ref), but the inverse of the given permutation is applied.
# Examples
```jldoctest
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> invpermute!(A, perm);
julia> A
4-element Vector{Int64}:
4
1
3
1
```
"""
invpermute!(a, p::AbstractVector) = invpermute!!(a, copymutable(p))
"""
invperm(v)
Return the inverse permutation of `v`.
If `B = A[v]`, then `A == B[invperm(v)]`.
# Examples
```jldoctest
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Vector{Int64}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> B[invperm(v)]
4-element Vector{Char}:
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
```
"""
function invperm(a::AbstractVector)
require_one_based_indexing(a)
b = zero(a) # similar vector of zeros
n = length(a)
@inbounds for (i, j) in enumerate(a)
((1 <= j <= n) && b[j] == 0) ||
throw(ArgumentError("argument is not a permutation"))
b[j] = i
end
b
end
function invperm(p::Union{Tuple{},Tuple{Int},Tuple{Int,Int}})
isperm(p) || throw(ArgumentError("argument is not a permutation"))
p # in dimensions 0-2, every permutation is its own inverse
end
function invperm(P::Tuple)
valn = Val(length(P))
ntuple(valn) do i
s = _foldoneto(nothing, valn) do s, j
s !== nothing && return s
P[j]==i && return j
nothing
end
s === nothing && throw(ArgumentError("argument is not a permutation"))
s
end
end
invperm(P::Any16) = Tuple(invperm(collect(P)))
#XXX This function should be moved to Combinatorics.jl but is currently used by Base.DSP.
"""
nextprod(factors::Union{Tuple,AbstractVector}, n)
Next integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers
``p_1``, ``p_2``, etcetera, for factors ``k_i`` in `factors`.
# Examples
```jldoctest
julia> nextprod((2, 3), 105)
108
julia> 2^2 * 3^3
108
```
!!! compat "Julia 1.6"
The method that accepts a tuple requires Julia 1.6 or later.
"""
function nextprod(a::Union{Tuple{Vararg{<:Integer}},AbstractVector{<:Integer}}, x::Real)
if x > typemax(Int)
throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
end
k = length(a)
v = fill(1, k) # current value of each counter
mx = map(a -> nextpow(a,x), a) # maximum value of each counter
v[1] = mx[1] # start at first case that is >= x
p::widen(Int) = mx[1] # initial value of product in this case
best = p
icarry = 1
while v[end] < mx[end]
if p >= x
best = p < best ? p : best # keep the best found yet
carrytest = true
while carrytest
p = div(p, v[icarry])
v[icarry] = 1
icarry += 1
p *= a[icarry]
v[icarry] *= a[icarry]
carrytest = v[icarry] > mx[icarry] && icarry < k
end
if p < x
icarry = 1
end
else
while p < x
p *= a[1]
v[1] *= a[1]
end
end
end
# might overflow, but want predictable return type
return mx[end] < best ? Int(mx[end]) : Int(best)
end