forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashing2.jl
232 lines (205 loc) · 7.34 KB
/
hashing2.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# This file is a part of Julia. License is MIT: https://julialang.org/license
## efficient value-based hashing of integers ##
function hash_integer(n::Integer, h::UInt)
h ⊻= hash_uint((n % UInt) ⊻ h)
n = abs(n)
n >>>= sizeof(UInt) << 3
while n != 0
h ⊻= hash_uint((n % UInt) ⊻ h)
n >>>= sizeof(UInt) << 3
end
return h
end
# this condition is true most (all?) of the time, and in this case we can define
# an optimized version of the above hash_integer(::Integer, ::UInt) method for BigInt
if GMP.Limb === UInt
# used e.g. for Rational{BigInt}
function hash_integer(n::BigInt, h::UInt)
GC.@preserve n begin
s = n.size
s == 0 && return hash_integer(0, h)
p = convert(Ptr{UInt}, n.d)
b = unsafe_load(p)
h ⊻= hash_uint(ifelse(s < 0, -b, b) ⊻ h)
for k = 2:abs(s)
h ⊻= hash_uint(unsafe_load(p, k) ⊻ h)
end
return h
end
end
end
## generic hashing for rational values ##
function hash(x::Real, h::UInt)
# decompose x as num*2^pow/den
num, pow, den = decompose(x)
# handle special values
num == 0 && den == 0 && return hash(NaN, h)
num == 0 && return hash(ifelse(den > 0, 0.0, -0.0), h)
den == 0 && return hash(ifelse(num > 0, Inf, -Inf), h)
# normalize decomposition
if den < 0
num = -num
den = -den
end
z = trailing_zeros(num)
if z != 0
num >>= z
pow += z
end
z = trailing_zeros(den)
if z != 0
den >>= z
pow -= z
end
# handle values representable as Int64, UInt64, Float64
if den == 1
left = ndigits0z(num,2) + pow
right = trailing_zeros(num) + pow
if -1074 <= right
if 0 <= right && left <= 64
left <= 63 && return hash(Int64(num) << Int(pow), h)
signbit(num) == signbit(den) && return hash(UInt64(num) << Int(pow), h)
end # typemin(Int64) handled by Float64 case
left <= 1024 && left - right <= 53 && return hash(ldexp(Float64(num),pow), h)
end
end
# handle generic rational values
h = hash_integer(den, h)
h = hash_integer(pow, h)
h = hash_integer(num, h)
return h
end
## streamlined hashing for BigInt, by avoiding allocation from shifts ##
if GMP.Limb === UInt
_divLimb(n) = UInt === UInt64 ? n >>> 6 : n >>> 5
_modLimb(n) = UInt === UInt64 ? n & 63 : n & 31
function hash(x::BigInt, h::UInt)
GC.@preserve x begin
sz = x.size
sz == 0 && return hash(0, h)
ptr = Ptr{UInt}(x.d)
if sz == 1
return hash(unsafe_load(ptr), h)
elseif sz == -1
limb = unsafe_load(ptr)
limb <= typemin(Int) % UInt && return hash(-(limb % Int), h)
end
pow = trailing_zeros(x)
nd = ndigits0z(x, 2)
idx = _divLimb(pow) + 1
shift = _modLimb(pow) % UInt
upshift = GMP.BITS_PER_LIMB - shift
asz = abs(sz)
if shift == 0
limb = unsafe_load(ptr, idx)
else
limb1 = unsafe_load(ptr, idx)
limb2 = idx < asz ? unsafe_load(ptr, idx+1) : UInt(0)
limb = limb2 << upshift | limb1 >> shift
end
if nd <= 1024 && nd - pow <= 53
return hash(ldexp(flipsign(Float64(limb), sz), pow), h)
end
h = hash_integer(1, h)
h = hash_integer(pow, h)
h ⊻= hash_uint(flipsign(limb, sz) ⊻ h)
for idx = idx+1:asz
if shift == 0
limb = unsafe_load(ptr, idx)
else
limb1 = limb2
if idx == asz
limb = limb1 >> shift
limb == 0 && break # don't hash leading zeros
else
limb2 = unsafe_load(ptr, idx+1)
limb = limb2 << upshift | limb1 >> shift
end
end
h ⊻= hash_uint(limb ⊻ h)
end
return h
end
end
end
#=
`decompose(x)`: non-canonical decomposition of rational values as `num*2^pow/den`.
The decompose function is the point where rational-valued numeric types that support
hashing hook into the hashing protocol. `decompose(x)` should return three integer
values `num, pow, den`, such that the value of `x` is mathematically equal to
num*2^pow/den
The decomposition need not be canonical in the sense that it just needs to be *some*
way to express `x` in this form, not any particular way – with the restriction that
`num` and `den` may not share any odd common factors. They may, however, have powers
of two in common – the generic hashing code will normalize those as necessary.
Special values:
- `x` is zero: `num` should be zero and `den` should have the same sign as `x`
- `x` is infinite: `den` should be zero and `num` should have the same sign as `x`
- `x` is not a number: `num` and `den` should both be zero
=#
decompose(x::Integer) = x, 0, 1
decompose(x::Rational) = numerator(x), 0, denominator(x)
function decompose(x::Float16)::NTuple{3,Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt16, x)
s = (n & 0x03ff) % Int16
e = ((n & 0x7c00) >> 10) % Int
s |= Int16(e != 0) << 10
d = ifelse(signbit(x), -1, 1)
s, e - 25 + (e == 0), d
end
function decompose(x::Float32)::NTuple{3,Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt32, x)
s = (n & 0x007fffff) % Int32
e = ((n & 0x7f800000) >> 23) % Int
s |= Int32(e != 0) << 23
d = ifelse(signbit(x), -1, 1)
s, e - 150 + (e == 0), d
end
function decompose(x::Float64)::Tuple{Int64, Int, Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt64, x)
s = (n & 0x000fffffffffffff) % Int64
e = ((n & 0x7ff0000000000000) >> 52) % Int
s |= Int64(e != 0) << 52
d = ifelse(signbit(x), -1, 1)
s, e - 1075 + (e == 0), d
end
function decompose(x::BigFloat)::Tuple{BigInt, Int, Int}
isnan(x) && return 0, 0, 0
isinf(x) && return x.sign, 0, 0
x == 0 && return 0, 0, x.sign
s = BigInt()
s.size = cld(x.prec, 8*sizeof(GMP.Limb)) # limbs
b = s.size * sizeof(GMP.Limb) # bytes
ccall((:__gmpz_realloc2, :libgmp), Cvoid, (Ref{BigInt}, Culong), s, 8b) # bits
ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Csize_t), s.d, x.d, b) # bytes
s, x.exp - 8b, x.sign
end
## streamlined hashing for smallish rational types ##
function hash(x::Rational{<:BitInteger64}, h::UInt)
num, den = Base.numerator(x), Base.denominator(x)
den == 1 && return hash(num, h)
den == 0 && return hash(ifelse(num > 0, Inf, -Inf), h)
if isodd(den)
pow = trailing_zeros(num)
num >>= pow
else
pow = trailing_zeros(den)
den >>= pow
pow = -pow
if den == 1 && abs(num) < 9007199254740992
return hash(ldexp(Float64(num),pow),h)
end
end
h = hash_integer(den, h)
h = hash_integer(pow, h)
h = hash_integer(num, h)
return h
end
## hashing Float16s ##
hash(x::Float16, h::UInt) = hash(Float64(x), h)