LitGPT supports a variety of LLM architectures with publicly available weights. You can download model weights and access a list of supported models using the LitGPT download.py
script.
Model | Model size | Reference |
---|---|---|
CodeGemma by Google | 7B | Google Team, Google Deepmind |
Code Llama by Meta AI | 7B, 13B, 34B, 70B | Rozière et al. 2023 |
Danube2 by H2O.ai | 1.8B | H2O.ai |
Dolly by Databricks | 3B, 7B, 12B | Conover et al. 2023 |
Falcon by TII UAE | 7B, 40B, 180B | TII 2023 |
FreeWilly2 (Stable Beluga 2) by Stability AI | 70B | Stability AI 2023 |
Function Calling Llama 2 by Trelis | 7B | Trelis et al. 2023 |
Gemma by Google | 2B, 7B | Google Team, Google Deepmind |
Llama 2 by Meta AI | 7B, 13B, 70B | Touvron et al. 2023 |
Llama 3 by Meta AI | 8B, 70B | Meta AI 2024 |
LongChat by LMSYS | 7B, 13B | LongChat Team 2023 |
Mistral and Mixtral by Mistral AI | 7B | Mistral website |
Nous-Hermes by NousResearch | 7B, 13B, 70B | Org page |
OpenLLaMA by OpenLM Research | 3B, 7B, 13B | Geng & Liu 2023 |
Phi by Microsoft Research | 1.3B, 2.7B | Li et al. 2023 |
Platypus by Lee at el. | 7B, 13B, 70B | Lee, Hunter, and Ruiz 2023 |
Pythia by EleutherAI | {14,31,70,160,410}M, {1,1.4,2.8,6.9,12}B | Biderman et al. 2023 |
RedPajama-INCITE by Together | 3B, 7B | Together 2023 |
StableCode by Stability AI | 3B | Stability AI 2023 |
StableLM by Stability AI | 3B, 7B | Stability AI 2023 |
StableLM Zephyr by Stability AI | 3B | Stability AI 2023 |
TinyLlama by Zhang et al. | 1.1B | Zhang et al. 2023 |
Vicuna by LMSYS | 7B, 13B, 33B | Li et al. 2023 |
To see all supported models, run the following command without arguments:
litgpt download
The output is shown below:
codellama/CodeLlama-13b-hf
codellama/CodeLlama-13b-Instruct-hf
codellama/CodeLlama-13b-Python-hf
codellama/CodeLlama-34b-hf
codellama/CodeLlama-34b-Instruct-hf
codellama/CodeLlama-34b-Python-hf
codellama/CodeLlama-70b-hf
codellama/CodeLlama-70b-Instruct-hf
codellama/CodeLlama-70b-Python-hf
codellama/CodeLlama-7b-hf
codellama/CodeLlama-7b-Instruct-hf
codellama/CodeLlama-7b-Python-hf
databricks/dolly-v2-12b
databricks/dolly-v2-3b
databricks/dolly-v2-7b
EleutherAI/pythia-1.4b
EleutherAI/pythia-1.4b-deduped
EleutherAI/pythia-12b
EleutherAI/pythia-12b-deduped
EleutherAI/pythia-14m
EleutherAI/pythia-160m
EleutherAI/pythia-160m-deduped
EleutherAI/pythia-1b
EleutherAI/pythia-1b-deduped
EleutherAI/pythia-2.8b
EleutherAI/pythia-2.8b-deduped
EleutherAI/pythia-31m
EleutherAI/pythia-410m
EleutherAI/pythia-410m-deduped
EleutherAI/pythia-6.9b
EleutherAI/pythia-6.9b-deduped
EleutherAI/pythia-70m
EleutherAI/pythia-70m-deduped
garage-bAInd/Camel-Platypus2-13B
garage-bAInd/Camel-Platypus2-70B
garage-bAInd/Platypus-30B
garage-bAInd/Platypus2-13B
garage-bAInd/Platypus2-70B
garage-bAInd/Platypus2-70B-instruct
garage-bAInd/Platypus2-7B
garage-bAInd/Stable-Platypus2-13B
google/codegemma-7b-it
google/gemma-2b
google/gemma-2b-it
google/gemma-7b
google/gemma-7b-it
h2oai/h2o-danube2-1.8b-chat
lmsys/longchat-13b-16k
lmsys/longchat-7b-16k
lmsys/vicuna-13b-v1.3
lmsys/vicuna-13b-v1.5
lmsys/vicuna-13b-v1.5-16k
lmsys/vicuna-33b-v1.3
lmsys/vicuna-7b-v1.3
lmsys/vicuna-7b-v1.5
lmsys/vicuna-7b-v1.5-16k
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-2-13b-hf
meta-llama/Llama-2-70b-chat-hf
meta-llama/Llama-2-70b-hf
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-7b-hf
meta-llama/Meta-Llama-3-70B
meta-llama/Meta-Llama-3-70B-Instruct
meta-llama/Meta-Llama-3-8B
meta-llama/Meta-Llama-3-8B-Instruct
microsoft/phi-1_5
microsoft/phi-2
mistralai/Mistral-7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
mistralai/Mistral-7B-v0.1
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mixtral-8x7B-v0.1
NousResearch/Nous-Hermes-13b
NousResearch/Nous-Hermes-llama-2-7b
NousResearch/Nous-Hermes-Llama2-13b
openlm-research/open_llama_13b
openlm-research/open_llama_3b
openlm-research/open_llama_7b
stabilityai/FreeWilly2
stabilityai/stable-code-3b
stabilityai/stablecode-completion-alpha-3b
stabilityai/stablecode-completion-alpha-3b-4k
stabilityai/stablecode-instruct-alpha-3b
stabilityai/stablelm-3b-4e1t
stabilityai/stablelm-base-alpha-3b
stabilityai/stablelm-base-alpha-7b
stabilityai/stablelm-tuned-alpha-3b
stabilityai/stablelm-tuned-alpha-7b
stabilityai/stablelm-zephyr-3b
tiiuae/falcon-180B
tiiuae/falcon-180B-chat
tiiuae/falcon-40b
tiiuae/falcon-40b-instruct
tiiuae/falcon-7b
tiiuae/falcon-7b-instruct
TinyLlama/TinyLlama-1.1B-Chat-v1.0
TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
togethercomputer/LLaMA-2-7B-32K
togethercomputer/RedPajama-INCITE-7B-Base
togethercomputer/RedPajama-INCITE-7B-Chat
togethercomputer/RedPajama-INCITE-7B-Instruct
togethercomputer/RedPajama-INCITE-Base-3B-v1
togethercomputer/RedPajama-INCITE-Base-7B-v0.1
togethercomputer/RedPajama-INCITE-Chat-3B-v1
togethercomputer/RedPajama-INCITE-Chat-7B-v0.1
togethercomputer/RedPajama-INCITE-Instruct-3B-v1
togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1
Trelis/Llama-2-7b-chat-hf-function-calling-v2
unsloth/Mistral-7B-v0.2
Tip
To sort the list above by model name after the /
, use litgpt download | sort -f -t'/' -k2
.
Note
If you want to adopt a model variant that is not listed in the table above but has a similar architecture as one of the supported models, you can use this model by by using the --model_name
argument as shown below:
litgpt download \
--repo_id NousResearch/Hermes-2-Pro-Mistral-7B \
--model_name Mistral-7B-v0.1
To download the weights for a specific model, use the --repo_id
argument. Replace <repo_id>
with the model's repository ID. For example:
litgpt download --repo_id <repo_id>
This command downloads the model checkpoint into the checkpoints/
directory.
For more options, add the --help
flag when running the script:
litgpt download --help
After conversion, run the model with the --checkpoint_dir
flag, adjusting repo_id
accordingly:
litgpt chat --checkpoint_dir checkpoints/<repo_id>
This section shows a typical end-to-end example for downloading and using TinyLlama:
- List available TinyLlama checkpoints:
litgpt download | grep Tiny
TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
TinyLlama/TinyLlama-1.1B-Chat-v1.0
- Download a TinyLlama checkpoint:
export repo_id=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
litgpt download --repo_id $repo_id
- Use the TinyLlama model:
litgpt chat --checkpoint_dir checkpoints/$repo_id
Note that certain models require that you've been granted access to the weights on the Hugging Face Hub.
For example, to get access to the Gemma 2B model, you can do so by following the steps at https://huggingface.co/google/gemma-2b. After access is granted, you can find your HF hub token in https://huggingface.co/settings/tokens.
Once you've been granted access and obtained the access token you need to pass the additional --access_token
:
litgpt download \
--repo_id google/gemma-2b \
--access_token your_hf_token
Sometimes you want to download the weights of a finetune of one of the models listed above. To do this, you need to manually specify the model_name
associated to the config to use. For example:
litgpt download \
--repo_id NousResearch/Hermes-2-Pro-Mistral-7B \
--model_name Mistral-7B-v0.1
The download.py
script will automatically convert the downloaded model checkpoint into a LitGPT-compatible format. In case this conversion fails due to GPU memory constraints, you can try to reduce the memory requirements by passing the --dtype bf16-true
flag to convert all parameters into this smaller precision (however, note that most model weights are already in a bfloat16 format, so it may not have any effect):
litgpt download \
--repo_id <repo_id>
--dtype bf16-true
(If your GPU does not support the bfloat16 format, you can also try a regular 16-bit float format via --dtype 16-true
.)
For development purposes, for example, when adding or experimenting with new model configurations, it may be beneficial to split the weight download and model conversion into two separate steps.
You can do this by passing the --convert_checkpoint false
option to the download script:
litgpt download \
--repo_id <repo_id> \
--convert_checkpoint false
and then calling the convert_hf_checkpoint.py
script:
litgpt convert to_litgpt \
--checkpoint_dir checkpoint_dir/<repo_id>
In some cases we don't need the model weight, for example, when we are pretraining a model from scratch instead of finetuning it. For cases like this, you can use the --tokenizer_only
flag to only download a model's tokenizer, which can then be used in the pretraining scripts:
litgpt download \
--repo_id TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T \
--tokenizer_only true
and
litgpt pretrain \
--data ... \
--model_name tiny-llama-1.1b \
--tokenizer_dir checkpoints/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/