- Introduction --- What is a pass?
- Quick Start --- Writing hello world
- Pass classes and requirements
- Pass Statistics
- Registering dynamically loaded passes
The LLVM Pass Framework is an important part of the LLVM system, because LLVM passes are where most of the interesting parts of the compiler exist. Passes perform the transformations and optimizations that make up the compiler, they build the analysis results that are used by these transformations, and they are, above all, a structuring technique for compiler code.
All LLVM passes are subclasses of the Pass class, which implement
functionality by overriding virtual methods inherited from Pass
. Depending
on how your pass works, you should inherit from the :ref:`ModulePass
<writing-an-llvm-pass-ModulePass>` , :ref:`CallGraphSCCPass
<writing-an-llvm-pass-CallGraphSCCPass>`, :ref:`FunctionPass
<writing-an-llvm-pass-FunctionPass>` , or :ref:`LoopPass
<writing-an-llvm-pass-LoopPass>`, or :ref:`RegionPass
<writing-an-llvm-pass-RegionPass>`, or :ref:`BasicBlockPass
<writing-an-llvm-pass-BasicBlockPass>` classes, which gives the system more
information about what your pass does, and how it can be combined with other
passes. One of the main features of the LLVM Pass Framework is that it
schedules passes to run in an efficient way based on the constraints that your
pass meets (which are indicated by which class they derive from).
We start by showing you how to construct a pass, everything from setting up the code, to compiling, loading, and executing it. After the basics are down, more advanced features are discussed.
Here we describe how to write the "hello world" of passes. The "Hello" pass is
designed to simply print out the name of non-external functions that exist in
the program being compiled. It does not modify the program at all, it just
inspects it. The source code and files for this pass are available in the LLVM
source tree in the lib/Transforms/Hello
directory.
First, configure and build LLVM. Next, you need to create a new directory
somewhere in the LLVM source base. For this example, we'll assume that you
made lib/Transforms/Hello
. Finally, you must set up a build script
(Makefile
) that will compile the source code for the new pass. To do this,
copy the following into Makefile
:
# Makefile for hello pass
# Path to top level of LLVM hierarchy
LEVEL = ../../..
# Name of the library to build
LIBRARYNAME = Hello
# Make the shared library become a loadable module so the tools can
# dlopen/dlsym on the resulting library.
LOADABLE_MODULE = 1
# Include the makefile implementation stuff
include $(LEVEL)/Makefile.common
This makefile specifies that all of the .cpp
files in the current directory
are to be compiled and linked together into a shared object
$(LEVEL)/Debug+Asserts/lib/Hello.so
that can be dynamically loaded by the
:program:`opt` or :program:`bugpoint` tools via their :option:`-load` options.
If your operating system uses a suffix other than .so
(such as Windows or Mac
OS X), the appropriate extension will be used.
If you are used CMake to build LLVM, see :ref:`cmake-out-of-source-pass`.
Now that we have the build scripts set up, we just need to write the code for the pass itself.
Now that we have a way to compile our new pass, we just have to write it. Start out with:
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
Which are needed because we are writing a Pass, we are operating on Functions, and we will be doing some printing.
Next we have:
using namespace llvm;
... which is required because the functions from the include files live in the llvm namespace.
Next we have:
namespace {
... which starts out an anonymous namespace. Anonymous namespaces are to C++
what the "static
" keyword is to C (at global scope). It makes the things
declared inside of the anonymous namespace visible only to the current file.
If you're not familiar with them, consult a decent C++ book for more
information.
Next, we declare our pass itself:
struct Hello : public FunctionPass {
This declares a "Hello
" class that is a subclass of :ref:`FunctionPass
<writing-an-llvm-pass-FunctionPass>`. The different builtin pass subclasses
are described in detail :ref:`later <writing-an-llvm-pass-pass-classes>`, but
for now, know that FunctionPass
operates on a function at a time.
static char ID;
Hello() : FunctionPass(ID) {}
This declares pass identifier used by LLVM to identify pass. This allows LLVM to avoid using expensive C++ runtime information.
bool runOnFunction(Function &F) override {
errs() << "Hello: ";
errs().write_escaped(F.getName()) << "\n";
return false;
}
}; // end of struct Hello
} // end of anonymous namespace
We declare a :ref:`runOnFunction <writing-an-llvm-pass-runOnFunction>` method, which overrides an abstract virtual method inherited from :ref:`FunctionPass <writing-an-llvm-pass-FunctionPass>`. This is where we are supposed to do our thing, so we just print out our message with the name of each function.
char Hello::ID = 0;
We initialize pass ID here. LLVM uses ID's address to identify a pass, so initialization value is not important.
static RegisterPass<Hello> X("hello", "Hello World Pass",
false /* Only looks at CFG */,
false /* Analysis Pass */);
Lastly, we :ref:`register our class <writing-an-llvm-pass-registration>`
Hello
, giving it a command line argument "hello
", and a name "Hello
World Pass". The last two arguments describe its behavior: if a pass walks CFG
without modifying it then the third argument is set to true
; if a pass is
an analysis pass, for example dominator tree pass, then true
is supplied as
the fourth argument.
As a whole, the .cpp
file looks like:
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct Hello : public FunctionPass {
static char ID;
Hello() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
errs() << "Hello: ";
errs().write_escaped(F.getName()) << '\n';
return false;
}
};
}
char Hello::ID = 0;
static RegisterPass<Hello> X("hello", "Hello World Pass", false, false);
Now that it's all together, compile the file with a simple "gmake
" command
from the top level of your build directory and you should get a new file
"Debug+Asserts/lib/Hello.so
". Note that everything in this file is
contained in an anonymous namespace --- this reflects the fact that passes
are self contained units that do not need external interfaces (although they
can have them) to be useful.
Now that you have a brand new shiny shared object file, we can use the
:program:`opt` command to run an LLVM program through your pass. Because you
registered your pass with RegisterPass
, you will be able to use the
:program:`opt` tool to access it, once loaded.
To test it, follow the example at the end of the :doc:`GettingStarted` to compile "Hello World" to LLVM. We can now run the bitcode file (hello.bc) for the program through our transformation like this (or course, any bitcode file will work):
$ opt -load ../../Debug+Asserts/lib/Hello.so -hello < hello.bc > /dev/null
Hello: __main
Hello: puts
Hello: main
The :option:`-load` option specifies that :program:`opt` should load your pass
as a shared object, which makes "-hello
" a valid command line argument
(which is one reason you need to :ref:`register your pass
<writing-an-llvm-pass-registration>`). Because the Hello pass does not modify
the program in any interesting way, we just throw away the result of
:program:`opt` (sending it to /dev/null
).
To see what happened to the other string you registered, try running :program:`opt` with the :option:`-help` option:
$ opt -load ../../Debug+Asserts/lib/Hello.so -help
OVERVIEW: llvm .bc -> .bc modular optimizer
USAGE: opt [options] <input bitcode>
OPTIONS:
Optimizations available:
...
-globalopt - Global Variable Optimizer
-globalsmodref-aa - Simple mod/ref analysis for globals
-gvn - Global Value Numbering
-hello - Hello World Pass
-indvars - Induction Variable Simplification
-inline - Function Integration/Inlining
...
The pass name gets added as the information string for your pass, giving some documentation to users of :program:`opt`. Now that you have a working pass, you would go ahead and make it do the cool transformations you want. Once you get it all working and tested, it may become useful to find out how fast your pass is. The :ref:`PassManager <writing-an-llvm-pass-passmanager>` provides a nice command line option (:option:`--time-passes`) that allows you to get information about the execution time of your pass along with the other passes you queue up. For example:
$ opt -load ../../Debug+Asserts/lib/Hello.so -hello -time-passes < hello.bc > /dev/null
Hello: __main
Hello: puts
Hello: main
===============================================================================
... Pass execution timing report ...
===============================================================================
Total Execution Time: 0.02 seconds (0.0479059 wall clock)
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass
0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
As you can see, our implementation above is pretty fast. The additional passes listed are automatically inserted by the :program:`opt` tool to verify that the LLVM emitted by your pass is still valid and well formed LLVM, which hasn't been broken somehow.
Now that you have seen the basics of the mechanics behind passes, we can talk about some more details of how they work and how to use them.
One of the first things that you should do when designing a new pass is to decide what class you should subclass for your pass. The :ref:`Hello World <writing-an-llvm-pass-basiccode>` example uses the :ref:`FunctionPass <writing-an-llvm-pass-FunctionPass>` class for its implementation, but we did not discuss why or when this should occur. Here we talk about the classes available, from the most general to the most specific.
When choosing a superclass for your Pass
, you should choose the most
specific class possible, while still being able to meet the requirements
listed. This gives the LLVM Pass Infrastructure information necessary to
optimize how passes are run, so that the resultant compiler isn't unnecessarily
slow.
The most plain and boring type of pass is the "ImmutablePass" class. This pass type is used for passes that do not have to be run, do not change state, and never need to be updated. This is not a normal type of transformation or analysis, but can provide information about the current compiler configuration.
Although this pass class is very infrequently used, it is important for providing information about the current target machine being compiled for, and other static information that can affect the various transformations.
ImmutablePass
es never invalidate other transformations, are never
invalidated, and are never "run".
The ModulePass class
is the most general of all superclasses that you can use. Deriving from
ModulePass
indicates that your pass uses the entire program as a unit,
referring to function bodies in no predictable order, or adding and removing
functions. Because nothing is known about the behavior of ModulePass
subclasses, no optimization can be done for their execution.
A module pass can use function level passes (e.g. dominators) using the
getAnalysis
interface getAnalysis<DominatorTree>(llvm::Function *)
to
provide the function to retrieve analysis result for, if the function pass does
not require any module or immutable passes. Note that this can only be done
for functions for which the analysis ran, e.g. in the case of dominators you
should only ask for the DominatorTree
for function definitions, not
declarations.
To write a correct ModulePass
subclass, derive from ModulePass
and
overload the runOnModule
method with the following signature:
virtual bool runOnModule(Module &M) = 0;
The runOnModule
method performs the interesting work of the pass. It
should return true
if the module was modified by the transformation and
false
otherwise.
The CallGraphSCCPass is used by
passes that need to traverse the program bottom-up on the call graph (callees
before callers). Deriving from CallGraphSCCPass
provides some mechanics
for building and traversing the CallGraph
, but also allows the system to
optimize execution of CallGraphSCCPass
es. If your pass meets the
requirements outlined below, and doesn't meet the requirements of a
:ref:`FunctionPass <writing-an-llvm-pass-FunctionPass>` or :ref:`BasicBlockPass
<writing-an-llvm-pass-BasicBlockPass>`, you should derive from
CallGraphSCCPass
.
TODO
: explain briefly what SCC, Tarjan's algo, and B-U mean.
To be explicit, CallGraphSCCPass subclasses are:
- ... not allowed to inspect or modify any
Function
s other than those in the current SCC and the direct callers and direct callees of the SCC. - ... required to preserve the current
CallGraph
object, updating it to reflect any changes made to the program. - ... not allowed to add or remove SCC's from the current Module, though they may change the contents of an SCC.
- ... allowed to add or remove global variables from the current Module.
- ... allowed to maintain state across invocations of :ref:`runOnSCC <writing-an-llvm-pass-runOnSCC>` (including global data).
Implementing a CallGraphSCCPass
is slightly tricky in some cases because it
has to handle SCCs with more than one node in it. All of the virtual methods
described below should return true
if they modified the program, or
false
if they didn't.
virtual bool doInitialization(CallGraph &CG);
The doInitialization
method is allowed to do most of the things that
CallGraphSCCPass
es are not allowed to do. They can add and remove
functions, get pointers to functions, etc. The doInitialization
method is
designed to do simple initialization type of stuff that does not depend on the
SCCs being processed. The doInitialization
method call is not scheduled to
overlap with any other pass executions (thus it should be very fast).
virtual bool runOnSCC(CallGraphSCC &SCC) = 0;
The runOnSCC
method performs the interesting work of the pass, and should
return true
if the module was modified by the transformation, false
otherwise.
virtual bool doFinalization(CallGraph &CG);
The doFinalization
method is an infrequently used method that is called
when the pass framework has finished calling :ref:`runOnSCC
<writing-an-llvm-pass-runOnSCC>` for every SCC in the program being compiled.
In contrast to ModulePass
subclasses, FunctionPass subclasses do have a
predictable, local behavior that can be expected by the system. All
FunctionPass
execute on each function in the program independent of all of
the other functions in the program. FunctionPass
es do not require that
they are executed in a particular order, and FunctionPass
es do not modify
external functions.
To be explicit, FunctionPass
subclasses are not allowed to:
- Inspect or modify a
Function
other than the one currently being processed. - Add or remove
Function
s from the currentModule
. - Add or remove global variables from the current
Module
. - Maintain state across invocations of :ref:`runOnFunction <writing-an-llvm-pass-runOnFunction>` (including global data).
Implementing a FunctionPass
is usually straightforward (See the :ref:`Hello
World <writing-an-llvm-pass-basiccode>` pass for example).
FunctionPass
es may overload three virtual methods to do their work. All
of these methods should return true
if they modified the program, or
false
if they didn't.
virtual bool doInitialization(Module &M);
The doInitialization
method is allowed to do most of the things that
FunctionPass
es are not allowed to do. They can add and remove functions,
get pointers to functions, etc. The doInitialization
method is designed to
do simple initialization type of stuff that does not depend on the functions
being processed. The doInitialization
method call is not scheduled to
overlap with any other pass executions (thus it should be very fast).
A good example of how this method should be used is the LowerAllocations pass. This pass
converts malloc
and free
instructions into platform dependent
malloc()
and free()
function calls. It uses the doInitialization
method to get a reference to the malloc
and free
functions that it
needs, adding prototypes to the module if necessary.
virtual bool runOnFunction(Function &F) = 0;
The runOnFunction
method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true
value
should be returned if the function is modified.
virtual bool doFinalization(Module &M);
The doFinalization
method is an infrequently used method that is called
when the pass framework has finished calling :ref:`runOnFunction
<writing-an-llvm-pass-runOnFunction>` for every function in the program being
compiled.
All LoopPass
execute on each loop in the function independent of all of the
other loops in the function. LoopPass
processes loops in loop nest order
such that outer most loop is processed last.
LoopPass
subclasses are allowed to update loop nest using LPPassManager
interface. Implementing a loop pass is usually straightforward.
LoopPass
es may overload three virtual methods to do their work. All
these methods should return true
if they modified the program, or false
if they didn't.
virtual bool doInitialization(Loop *, LPPassManager &LPM);
The doInitialization
method is designed to do simple initialization type of
stuff that does not depend on the functions being processed. The
doInitialization
method call is not scheduled to overlap with any other
pass executions (thus it should be very fast). LPPassManager
interface
should be used to access Function
or Module
level analysis information.
virtual bool runOnLoop(Loop *, LPPassManager &LPM) = 0;
The runOnLoop
method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true
value
should be returned if the function is modified. LPPassManager
interface
should be used to update loop nest.
virtual bool doFinalization();
The doFinalization
method is an infrequently used method that is called
when the pass framework has finished calling :ref:`runOnLoop
<writing-an-llvm-pass-runOnLoop>` for every loop in the program being compiled.
RegionPass
is similar to :ref:`LoopPass <writing-an-llvm-pass-LoopPass>`,
but executes on each single entry single exit region in the function.
RegionPass
processes regions in nested order such that the outer most
region is processed last.
RegionPass
subclasses are allowed to update the region tree by using the
RGPassManager
interface. You may overload three virtual methods of
RegionPass
to implement your own region pass. All these methods should
return true
if they modified the program, or false
if they did not.
virtual bool doInitialization(Region *, RGPassManager &RGM);
The doInitialization
method is designed to do simple initialization type of
stuff that does not depend on the functions being processed. The
doInitialization
method call is not scheduled to overlap with any other
pass executions (thus it should be very fast). RPPassManager
interface
should be used to access Function
or Module
level analysis information.
virtual bool runOnRegion(Region *, RGPassManager &RGM) = 0;
The runOnRegion
method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true value should be
returned if the region is modified. RGPassManager
interface should be used to
update region tree.
virtual bool doFinalization();
The doFinalization
method is an infrequently used method that is called
when the pass framework has finished calling :ref:`runOnRegion
<writing-an-llvm-pass-runOnRegion>` for every region in the program being
compiled.
BasicBlockPass
es are just like :ref:`FunctionPass's
<writing-an-llvm-pass-FunctionPass>` , except that they must limit their scope
of inspection and modification to a single basic block at a time. As such,
they are not allowed to do any of the following:
- Modify or inspect any basic blocks outside of the current one.
- Maintain state across invocations of :ref:`runOnBasicBlock <writing-an-llvm-pass-runOnBasicBlock>`.
- Modify the control flow graph (by altering terminator instructions)
- Any of the things forbidden for :ref:`FunctionPasses <writing-an-llvm-pass-FunctionPass>`.
BasicBlockPass
es are useful for traditional local and "peephole"
optimizations. They may override the same :ref:`doInitialization(Module &)
<writing-an-llvm-pass-doInitialization-mod>` and :ref:`doFinalization(Module &)
<writing-an-llvm-pass-doFinalization-mod>` methods that :ref:`FunctionPass's
<writing-an-llvm-pass-FunctionPass>` have, but also have the following virtual
methods that may also be implemented:
virtual bool doInitialization(Function &F);
The doInitialization
method is allowed to do most of the things that
BasicBlockPass
es are not allowed to do, but that FunctionPass
es
can. The doInitialization
method is designed to do simple initialization
that does not depend on the BasicBlock
s being processed. The
doInitialization
method call is not scheduled to overlap with any other
pass executions (thus it should be very fast).
virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
Override this function to do the work of the BasicBlockPass
. This function
is not allowed to inspect or modify basic blocks other than the parameter, and
are not allowed to modify the CFG. A true
value must be returned if the
basic block is modified.
virtual bool doFinalization(Function &F);
The doFinalization
method is an infrequently used method that is called
when the pass framework has finished calling :ref:`runOnBasicBlock
<writing-an-llvm-pass-runOnBasicBlock>` for every BasicBlock
in the program
being compiled. This can be used to perform per-function finalization.
A MachineFunctionPass
is a part of the LLVM code generator that executes on
the machine-dependent representation of each LLVM function in the program.
Code generator passes are registered and initialized specially by
TargetMachine::addPassesToEmitFile
and similar routines, so they cannot
generally be run from the :program:`opt` or :program:`bugpoint` commands.
A MachineFunctionPass
is also a FunctionPass
, so all the restrictions
that apply to a FunctionPass
also apply to it. MachineFunctionPass
es
also have additional restrictions. In particular, MachineFunctionPass
es
are not allowed to do any of the following:
- Modify or create any LLVM IR
Instruction
s,BasicBlock
s,Argument
s,Function
s,GlobalVariable
s,GlobalAlias
es, orModule
s. - Modify a
MachineFunction
other than the one currently being processed. - Maintain state across invocations of :ref:`runOnMachineFunction <writing-an-llvm-pass-runOnMachineFunction>` (including global data).
virtual bool runOnMachineFunction(MachineFunction &MF) = 0;
runOnMachineFunction
can be considered the main entry point of a
MachineFunctionPass
; that is, you should override this method to do the
work of your MachineFunctionPass
.
The runOnMachineFunction
method is called on every MachineFunction
in a
Module
, so that the MachineFunctionPass
may perform optimizations on
the machine-dependent representation of the function. If you want to get at
the LLVM Function
for the MachineFunction
you're working on, use
MachineFunction
's getFunction()
accessor method --- but remember, you
may not modify the LLVM Function
or its contents from a
MachineFunctionPass
.
In the :ref:`Hello World <writing-an-llvm-pass-basiccode>` example pass we illustrated how pass registration works, and discussed some of the reasons that it is used and what it does. Here we discuss how and why passes are registered.
As we saw above, passes are registered with the RegisterPass
template. The
template parameter is the name of the pass that is to be used on the command
line to specify that the pass should be added to a program (for example, with
:program:`opt` or :program:`bugpoint`). The first argument is the name of the
pass, which is to be used for the :option:`-help` output of programs, as well
as for debug output generated by the :option:`--debug-pass` option.
If you want your pass to be easily dumpable, you should implement the virtual print method:
virtual void print(llvm::raw_ostream &O, const Module *M) const;
The print
method must be implemented by "analyses" in order to print a
human readable version of the analysis results. This is useful for debugging
an analysis itself, as well as for other people to figure out how an analysis
works. Use the opt -analyze
argument to invoke this method.
The llvm::raw_ostream
parameter specifies the stream to write the results
on, and the Module
parameter gives a pointer to the top level module of the
program that has been analyzed. Note however that this pointer may be NULL
in certain circumstances (such as calling the Pass::dump()
from a
debugger), so it should only be used to enhance debug output, it should not be
depended on.
One of the main responsibilities of the PassManager
is to make sure that
passes interact with each other correctly. Because PassManager
tries to
:ref:`optimize the execution of passes <writing-an-llvm-pass-passmanager>` it
must know how the passes interact with each other and what dependencies exist
between the various passes. To track this, each pass can declare the set of
passes that are required to be executed before the current pass, and the passes
which are invalidated by the current pass.
Typically this functionality is used to require that analysis results are computed before your pass is run. Running arbitrary transformation passes can invalidate the computed analysis results, which is what the invalidation set specifies. If a pass does not implement the :ref:`getAnalysisUsage <writing-an-llvm-pass-getAnalysisUsage>` method, it defaults to not having any prerequisite passes, and invalidating all other passes.
virtual void getAnalysisUsage(AnalysisUsage &Info) const;
By implementing the getAnalysisUsage
method, the required and invalidated
sets may be specified for your transformation. The implementation should fill
in the AnalysisUsage object with
information about which passes are required and not invalidated. To do this, a
pass may call any of the following methods on the AnalysisUsage
object:
If your pass requires a previous pass to be executed (an analysis for example),
it can use one of these methods to arrange for it to be run before your pass.
LLVM has many different types of analyses and passes that can be required,
spanning the range from DominatorSet
to BreakCriticalEdges
. Requiring
BreakCriticalEdges
, for example, guarantees that there will be no critical
edges in the CFG when your pass has been run.
Some analyses chain to other analyses to do their job. For example, an
AliasAnalysis <AliasAnalysis> implementation is required to :ref:`chain
<aliasanalysis-chaining>` to other alias analysis passes. In cases where
analyses chain, the addRequiredTransitive
method should be used instead of
the addRequired
method. This informs the PassManager
that the
transitively required pass should be alive as long as the requiring pass is.
One of the jobs of the PassManager
is to optimize how and when analyses are
run. In particular, it attempts to avoid recomputing data unless it needs to.
For this reason, passes are allowed to declare that they preserve (i.e., they
don't invalidate) an existing analysis if it's available. For example, a
simple constant folding pass would not modify the CFG, so it can't possibly
affect the results of dominator analysis. By default, all passes are assumed
to invalidate all others.
The AnalysisUsage
class provides several methods which are useful in
certain circumstances that are related to addPreserved
. In particular, the
setPreservesAll
method can be called to indicate that the pass does not
modify the LLVM program at all (which is true for analyses), and the
setPreservesCFG
method can be used by transformations that change
instructions in the program but do not modify the CFG or terminator
instructions (note that this property is implicitly set for
:ref:`BasicBlockPass <writing-an-llvm-pass-BasicBlockPass>`es).
addPreserved
is particularly useful for transformations like
BreakCriticalEdges
. This pass knows how to update a small set of loop and
dominator related analyses if they exist, so it can preserve them, despite the
fact that it hacks on the CFG.
// This example modifies the program, but does not modify the CFG
void LICM::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<LoopInfoWrapperPass>();
}
The Pass::getAnalysis<>
method is automatically inherited by your class,
providing you with access to the passes that you declared that you required
with the :ref:`getAnalysisUsage <writing-an-llvm-pass-getAnalysisUsage>`
method. It takes a single template argument that specifies which pass class
you want, and returns a reference to that pass. For example:
bool LICM::runOnFunction(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
//...
}
This method call returns a reference to the pass desired. You may get a
runtime assertion failure if you attempt to get an analysis that you did not
declare as required in your :ref:`getAnalysisUsage
<writing-an-llvm-pass-getAnalysisUsage>` implementation. This method can be
called by your run*
method implementation, or by any other local method
invoked by your run*
method.
A module level pass can use function level analysis info using this interface. For example:
bool ModuleLevelPass::runOnModule(Module &M) {
//...
DominatorTree &DT = getAnalysis<DominatorTree>(Func);
//...
}
In above example, runOnFunction
for DominatorTree
is called by pass
manager before returning a reference to the desired pass.
If your pass is capable of updating analyses if they exist (e.g.,
BreakCriticalEdges
, as described above), you can use the
getAnalysisIfAvailable
method, which returns a pointer to the analysis if
it is active. For example:
if (DominatorSet *DS = getAnalysisIfAvailable<DominatorSet>()) {
// A DominatorSet is active. This code will update it.
}
Now that we understand the basics of how passes are defined, how they are used, and how they are required from other passes, it's time to get a little bit fancier. All of the pass relationships that we have seen so far are very simple: one pass depends on one other specific pass to be run before it can run. For many applications, this is great, for others, more flexibility is required.
In particular, some analyses are defined such that there is a single simple interface to the analysis results, but multiple ways of calculating them. Consider alias analysis for example. The most trivial alias analysis returns "may alias" for any alias query. The most sophisticated analysis a flow-sensitive, context-sensitive interprocedural analysis that can take a significant amount of time to execute (and obviously, there is a lot of room between these two extremes for other implementations). To cleanly support situations like this, the LLVM Pass Infrastructure supports the notion of Analysis Groups.
An Analysis Group is a single simple interface that may be implemented by
multiple different passes. Analysis Groups can be given human readable names
just like passes, but unlike passes, they need not derive from the Pass
class. An analysis group may have one or more implementations, one of which is
the "default" implementation.
Analysis groups are used by client passes just like other passes are: the
AnalysisUsage::addRequired()
and Pass::getAnalysis()
methods. In order
to resolve this requirement, the :ref:`PassManager
<writing-an-llvm-pass-passmanager>` scans the available passes to see if any
implementations of the analysis group are available. If none is available, the
default implementation is created for the pass to use. All standard rules for
:ref:`interaction between passes <writing-an-llvm-pass-interaction>` still
apply.
Although :ref:`Pass Registration <writing-an-llvm-pass-registration>` is optional for normal passes, all analysis group implementations must be registered, and must use the :ref:`INITIALIZE_AG_PASS <writing-an-llvm-pass-RegisterAnalysisGroup>` template to join the implementation pool. Also, a default implementation of the interface must be registered with :ref:`RegisterAnalysisGroup <writing-an-llvm-pass-RegisterAnalysisGroup>`.
As a concrete example of an Analysis Group in action, consider the AliasAnalysis analysis group. The default implementation of the alias analysis interface (the basicaa pass) just does a few simple checks that don't require significant analysis to compute (such as: two different globals can never alias each other, etc). Passes that use the AliasAnalysis interface (for example the gcse pass), do not care which implementation of alias analysis is actually provided, they just use the designated interface.
From the user's perspective, commands work just like normal. Issuing the
command opt -gcse ...
will cause the basicaa
class to be instantiated
and added to the pass sequence. Issuing the command opt -somefancyaa -gcse
...
will cause the gcse
pass to use the somefancyaa
alias analysis
(which doesn't actually exist, it's just a hypothetical example) instead.
The RegisterAnalysisGroup
template is used to register the analysis group
itself, while the INITIALIZE_AG_PASS
is used to add pass implementations to
the analysis group. First, an analysis group should be registered, with a
human readable name provided for it. Unlike registration of passes, there is
no command line argument to be specified for the Analysis Group Interface
itself, because it is "abstract":
static RegisterAnalysisGroup<AliasAnalysis> A("Alias Analysis");
Once the analysis is registered, passes can declare that they are valid implementations of the interface by using the following code:
namespace {
// Declare that we implement the AliasAnalysis interface
INITIALIZE_AG_PASS(FancyAA, AliasAnalysis , "somefancyaa",
"A more complex alias analysis implementation",
false, // Is CFG Only?
true, // Is Analysis?
false); // Is default Analysis Group implementation?
}
This just shows a class FancyAA
that uses the INITIALIZE_AG_PASS
macro
both to register and to "join" the AliasAnalysis analysis group.
Every implementation of an analysis group should join using this macro.
namespace {
// Declare that we implement the AliasAnalysis interface
INITIALIZE_AG_PASS(BasicAA, AliasAnalysis, "basicaa",
"Basic Alias Analysis (default AA impl)",
false, // Is CFG Only?
true, // Is Analysis?
true); // Is default Analysis Group implementation?
}
Here we show how the default implementation is specified (using the final
argument to the INITIALIZE_AG_PASS
template). There must be exactly one
default implementation available at all times for an Analysis Group to be used.
Only default implementation can derive from ImmutablePass
. Here we declare
that the BasicAliasAnalysis pass is the default
implementation for the interface.
The Statistic class is designed to be an easy way to expose various success metrics from passes. These statistics are printed at the end of a run, when the :option:`-stats` command line option is enabled on the command line. See the :ref:`Statistics section <Statistic>` in the Programmer's Manual for details.
The PassManager class takes a list of passes, ensures their :ref:`prerequisites <writing-an-llvm-pass-interaction>` are set up correctly, and then schedules passes to run efficiently. All of the LLVM tools that run passes use the PassManager for execution of these passes.
The PassManager does two main things to try to reduce the execution time of a series of passes:
Share analysis results. The
PassManager
attempts to avoid recomputing analysis results as much as possible. This means keeping track of which analyses are available already, which analyses get invalidated, and which analyses are needed to be run for a pass. An important part of work is that thePassManager
tracks the exact lifetime of all analysis results, allowing it to :ref:`free memory <writing-an-llvm-pass-releaseMemory>` allocated to holding analysis results as soon as they are no longer needed.Pipeline the execution of passes on the program. The
PassManager
attempts to get better cache and memory usage behavior out of a series of passes by pipelining the passes together. This means that, given a series of consecutive :ref:`FunctionPass <writing-an-llvm-pass-FunctionPass>`, it will execute all of the :ref:`FunctionPass <writing-an-llvm-pass-FunctionPass>` on the first function, then all of the :ref:`FunctionPasses <writing-an-llvm-pass-FunctionPass>` on the second function, etc... until the entire program has been run through the passes.This improves the cache behavior of the compiler, because it is only touching the LLVM program representation for a single function at a time, instead of traversing the entire program. It reduces the memory consumption of compiler, because, for example, only one DominatorSet needs to be calculated at a time. This also makes it possible to implement some :ref:`interesting enhancements <writing-an-llvm-pass-SMP>` in the future.
The effectiveness of the PassManager
is influenced directly by how much
information it has about the behaviors of the passes it is scheduling. For
example, the "preserved" set is intentionally conservative in the face of an
unimplemented :ref:`getAnalysisUsage <writing-an-llvm-pass-getAnalysisUsage>`
method. Not implementing when it should be implemented will have the effect of
not allowing any analysis results to live across the execution of your pass.
The PassManager
class exposes a --debug-pass
command line options that
is useful for debugging pass execution, seeing how things work, and diagnosing
when you should be preserving more analyses than you currently are. (To get
information about all of the variants of the --debug-pass
option, just type
"opt -help-hidden
").
By using the --debug-pass=Structure option, for example, we can see how our :ref:`Hello World <writing-an-llvm-pass-basiccode>` pass interacts with other passes. Lets try it out with the gcse and licm passes:
$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure < hello.bc > /dev/null
Module Pass Manager
Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination
-- Immediate Dominators Construction
-- Global Common Subexpression Elimination
Natural Loop Construction
Loop Invariant Code Motion
-- Natural Loop Construction
-- Loop Invariant Code Motion
Module Verifier
-- Dominator Set Construction
-- Module Verifier
Bitcode Writer
--Bitcode Writer
This output shows us when passes are constructed and when the analysis results
are known to be dead (prefixed with "--
"). Here we see that GCSE uses
dominator and immediate dominator information to do its job. The LICM pass
uses natural loop information, which uses dominator sets, but not immediate
dominators. Because immediate dominators are no longer useful after the GCSE
pass, it is immediately destroyed. The dominator sets are then reused to
compute natural loop information, which is then used by the LICM pass.
After the LICM pass, the module verifier runs (which is automatically added by the :program:`opt` tool), which uses the dominator set to check that the resultant LLVM code is well formed. After it finishes, the dominator set information is destroyed, after being computed once, and shared by three passes.
Lets see how this changes when we run the :ref:`Hello World <writing-an-llvm-pass-basiccode>` pass in between the two passes:
$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure < hello.bc > /dev/null
Module Pass Manager
Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination
-- Dominator Set Construction
-- Immediate Dominators Construction
-- Global Common Subexpression Elimination
Hello World Pass
-- Hello World Pass
Dominator Set Construction
Natural Loop Construction
Loop Invariant Code Motion
-- Natural Loop Construction
-- Loop Invariant Code Motion
Module Verifier
-- Dominator Set Construction
-- Module Verifier
Bitcode Writer
--Bitcode Writer
Hello: __main
Hello: puts
Hello: main
Here we see that the :ref:`Hello World <writing-an-llvm-pass-basiccode>` pass has killed the Dominator Set pass, even though it doesn't modify the code at all! To fix this, we need to add the following :ref:`getAnalysisUsage <writing-an-llvm-pass-getAnalysisUsage>` method to our pass:
// We don't modify the program, so we preserve all analyses
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
Now when we run our pass, we get this output:
$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure < hello.bc > /dev/null
Pass Arguments: -gcse -hello -licm
Module Pass Manager
Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination
-- Immediate Dominators Construction
-- Global Common Subexpression Elimination
Hello World Pass
-- Hello World Pass
Natural Loop Construction
Loop Invariant Code Motion
-- Loop Invariant Code Motion
-- Natural Loop Construction
Module Verifier
-- Dominator Set Construction
-- Module Verifier
Bitcode Writer
--Bitcode Writer
Hello: __main
Hello: puts
Hello: main
Which shows that we don't accidentally invalidate dominator information anymore, and therefore do not have to compute it twice.
virtual void releaseMemory();
The PassManager
automatically determines when to compute analysis results,
and how long to keep them around for. Because the lifetime of the pass object
itself is effectively the entire duration of the compilation process, we need
some way to free analysis results when they are no longer useful. The
releaseMemory
virtual method is the way to do this.
If you are writing an analysis or any other pass that retains a significant
amount of state (for use by another pass which "requires" your pass and uses
the :ref:`getAnalysis <writing-an-llvm-pass-getAnalysis>` method) you should
implement releaseMemory
to, well, release the memory allocated to maintain
this internal state. This method is called after the run*
method for the
class, before the next call of run*
in your pass.
Size matters when constructing production quality tools using LLVM, both for the purposes of distribution, and for regulating the resident code size when running on the target system. Therefore, it becomes desirable to selectively use some passes, while omitting others and maintain the flexibility to change configurations later on. You want to be able to do all this, and, provide feedback to the user. This is where pass registration comes into play.
The fundamental mechanisms for pass registration are the
MachinePassRegistry
class and subclasses of MachinePassRegistryNode
.
An instance of MachinePassRegistry
is used to maintain a list of
MachinePassRegistryNode
objects. This instance maintains the list and
communicates additions and deletions to the command line interface.
An instance of MachinePassRegistryNode
subclass is used to maintain
information provided about a particular pass. This information includes the
command line name, the command help string and the address of the function used
to create an instance of the pass. A global static constructor of one of these
instances registers with a corresponding MachinePassRegistry
, the static
destructor unregisters. Thus a pass that is statically linked in the tool
will be registered at start up. A dynamically loaded pass will register on
load and unregister at unload.
There are predefined registries to track instruction scheduling
(RegisterScheduler
) and register allocation (RegisterRegAlloc
) machine
passes. Here we will describe how to register a register allocator machine
pass.
Implement your register allocator machine pass. In your register allocator
.cpp
file add the following include:
#include "llvm/CodeGen/RegAllocRegistry.h"
Also in your register allocator .cpp
file, define a creator function in the
form:
FunctionPass *createMyRegisterAllocator() {
return new MyRegisterAllocator();
}
Note that the signature of this function should match the type of
RegisterRegAlloc::FunctionPassCtor
. In the same file add the "installing"
declaration, in the form:
static RegisterRegAlloc myRegAlloc("myregalloc",
"my register allocator help string",
createMyRegisterAllocator);
Note the two spaces prior to the help string produces a tidy result on the :option:`-help` query.
$ llc -help
...
-regalloc - Register allocator to use (default=linearscan)
=linearscan - linear scan register allocator
=local - local register allocator
=simple - simple register allocator
=myregalloc - my register allocator help string
...
And that's it. The user is now free to use -regalloc=myregalloc
as an
option. Registering instruction schedulers is similar except use the
RegisterScheduler
class. Note that the
RegisterScheduler::FunctionPassCtor
is significantly different from
RegisterRegAlloc::FunctionPassCtor
.
To force the load/linking of your register allocator into the
:program:`llc`/:program:`lli` tools, add your creator function's global
declaration to Passes.h
and add a "pseudo" call line to
llvm/Codegen/LinkAllCodegenComponents.h
.
The easiest way to get started is to clone one of the existing registries; we
recommend llvm/CodeGen/RegAllocRegistry.h
. The key things to modify are
the class name and the FunctionPassCtor
type.
Then you need to declare the registry. Example: if your pass registry is
RegisterMyPasses
then define:
MachinePassRegistry RegisterMyPasses::Registry;
And finally, declare the command line option for your passes. Example:
cl::opt<RegisterMyPasses::FunctionPassCtor, false,
RegisterPassParser<RegisterMyPasses> >
MyPassOpt("mypass",
cl::init(&createDefaultMyPass),
cl::desc("my pass option help"));
Here the command option is "mypass
", with createDefaultMyPass
as the
default creator.
Unfortunately, using GDB with dynamically loaded passes is not as easy as it should be. First of all, you can't set a breakpoint in a shared object that has not been loaded yet, and second of all there are problems with inlined functions in shared objects. Here are some suggestions to debugging your pass with GDB.
For sake of discussion, I'm going to assume that you are debugging a transformation invoked by :program:`opt`, although nothing described here depends on that.
First thing you do is start gdb on the opt process:
$ gdb opt
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "sparc-sun-solaris2.6"...
(gdb)
Note that :program:`opt` has a lot of debugging information in it, so it takes
time to load. Be patient. Since we cannot set a breakpoint in our pass yet
(the shared object isn't loaded until runtime), we must execute the process,
and have it stop before it invokes our pass, but after it has loaded the shared
object. The most foolproof way of doing this is to set a breakpoint in
PassManager::run
and then run the process with the arguments you want:
$ (gdb) break llvm::PassManager::run
Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
(gdb) run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
70 bool PassManager::run(Module &M) { return PM->run(M); }
(gdb)
Once the :program:`opt` stops in the PassManager::run
method you are now
free to set breakpoints in your pass so that you can trace through execution or
do other standard debugging stuff.
Once you have the basics down, there are a couple of problems that GDB has, some with solutions, some without.
- Inline functions have bogus stack information. In general, GDB does a pretty
good job getting stack traces and stepping through inline functions. When a
pass is dynamically loaded however, it somehow completely loses this
capability. The only solution I know of is to de-inline a function (move it
from the body of a class to a
.cpp
file). - Restarting the program breaks breakpoints. After following the information
above, you have succeeded in getting some breakpoints planted in your pass.
Nex thing you know, you restart the program (i.e., you type "
run
" again), and you start getting errors about breakpoints being unsettable. The only way I have found to "fix" this problem is to delete the breakpoints that are already set in your pass, run the program, and re-set the breakpoints once execution stops inPassManager::run
.
Hopefully these tips will help with common case debugging situations. If you'd like to contribute some tips of your own, just contact Chris.
Although the LLVM Pass Infrastructure is very capable as it stands, and does some nifty stuff, there are things we'd like to add in the future. Here is where we are going:
Multiple CPU machines are becoming more common and compilation can never be
fast enough: obviously we should allow for a multithreaded compiler. Because
of the semantics defined for passes above (specifically they cannot maintain
state across invocations of their run*
methods), a nice clean way to
implement a multithreaded compiler would be for the PassManager
class to
create multiple instances of each pass object, and allow the separate instances
to be hacking on different parts of the program at the same time.
This implementation would prevent each of the passes from having to implement multithreaded constructs, requiring only the LLVM core to have locking in a few places (for global resources). Although this is a simple extension, we simply haven't had time (or multiprocessor machines, thus a reason) to implement this. Despite that, we have kept the LLVM passes SMP ready, and you should too.