forked from ibal3233/DRL-MEC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAgent_NoStateCoding.py
225 lines (192 loc) · 9.14 KB
/
Agent_NoStateCoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import random
from collections import namedtuple
# this file implements the agent (MEC server), where the input of the DNN is $\mu_t$ and the first two layers are all connected, without the proposed state coding.
# the other parts of this code is same as the file 'Agent.py', the difference is only the input layer of the DNN
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FullNet(nn.Module):
def __init__(self, state_num, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, task_num):
super(FullNet, self).__init__()
self.fc1 = nn.Linear(state_num, task_num)
self.fc2 = nn.Linear(task_num, n_mid1)
self.fc3 = nn.Linear(n_mid1, n_mid2)
self.fc4 = nn.Linear(n_mid2, n_mid3)
self.fc5 = nn.Linear(n_mid3, n_mid4)
self.fc6 = nn.Linear(n_mid4, n_mid5)
self.fc7 = nn.Linear(n_mid5, task_num)
def forward(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
h3 = F.relu(self.fc3(h2))
h4 = F.relu(self.fc4(h3))
h5 = F.relu(self.fc5(h4))
h6 = F.relu(self.fc6(h5))
output = self.fc7(h6)
return output
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory:
def __init__(self, CAPACITY):
self.capacity = CAPACITY
self.memory = []
self.index = 0
def push(self, state, action, state_next, reward):
'''save the transition = (state, action, state_next, reward)'''
if len(self.memory) < self.capacity:
self.memory.append(None)#
self.memory[self.index] = Transition(state, action, state_next, reward)
self.index = (self.index + 1)%self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
BATCH_SIZE = 32
CAPACITY = 10000
class BSAgentBrain:
def __init__(self, state_num, action_num, MEC_C, File_num, D_f, learning_rate=0.0001, GAMMA=0.9):
self.state_num = state_num
self.action_num = action_num
self.memory = ReplayMemory(CAPACITY)
self.MEC_C = MEC_C
self.File_num = File_num
self.Df = D_f
self.GAMMA = GAMMA
n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out = state_num, 512, 512, 256, 256, 128, action_num
self.main_q_network = FullNet(n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out).to(device)
self.target_q_network = FullNet(n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out).to(device)
self.optimizer = optim.Adam(self.main_q_network.parameters(), lr=learning_rate)
def action_selection(self, last_layer_out):
capacity = int(self.MEC_C / (10 ** 8))
Df = self.Df / (10 ** 8)
last_out = torch.squeeze(last_layer_out)
file_num = self.File_num
caching_vector = np.zeros(file_num)
W_r = np.zeros((file_num, capacity+1))
W_value = np.zeros((file_num, capacity+1))
for f in range(file_num):
if f < file_num-1:
for q in range(capacity+1):
if f == 0:
if q < Df[f]:
W_r[f, q] = 0
W_value[f, q] = 0
else:
W_r[f, q] = 1
W_value[f, q] = last_out[f]
else:
if q < Df[f]:
W_r[f, q] = 0
W_value[f, q] = W_value[f-1, q]
else:
dim2_ind = int(q-Df[f])
caching_v = last_out[f] + W_value[f-1, dim2_ind]
if caching_v > W_value[f-1, q]:
W_r[f, q] = 1
W_value[f, q] = caching_v
else:
W_r[f, q] = 0
W_value[f, q] = W_value[f-1, q]
else:
dim2_ind = int(capacity-Df[f])
caching_v = last_out[f] + W_value[f-1, dim2_ind]
if caching_v > W_value[f-1, capacity]:
W_r[f, capacity] = 1
W_value[f, capacity] = caching_v
else:
W_r[f, capacity] = 0
W_value[f, capacity] = W_value[f-1, capacity]
caching_vector[file_num-1] = W_r[file_num-1, capacity]
temp_L = caching_vector[file_num-1] * Df[file_num-1]
temp_L = int(temp_L)
posi_index = range(file_num-1)
inver_index = sorted(posi_index, reverse=True)
for index in inver_index:
dim2_ind = int(capacity-temp_L)
caching_vector[index] = W_r[index, dim2_ind]
temp_L += caching_vector[index] * Df[index]
temp_L = int(temp_L)
caching_vector = torch.from_numpy(caching_vector).type(torch.FloatTensor)
caching_vector = torch.unsqueeze(caching_vector, 0)
caching_action = caching_vector
return caching_action
def decide_action(self, state, training=True):
if np.random.uniform(0, 1) < 0.5 and training == True: # explore
action = np.zeros(self.File_num)
shuffle_index = [i for i in range(self.File_num)]
np.random.shuffle(shuffle_index)
residual_C = self.MEC_C
for ind in range(self.File_num):
file_ind = shuffle_index[ind]
if residual_C > 0 and self.Df[file_ind] < residual_C:
action[file_ind] = 1
residual_C = residual_C - self.Df[file_ind]
action = torch.from_numpy(action).type(torch.FloatTensor)
action = torch.unsqueeze(action, 0)
else:
self.main_q_network.eval()
with torch.no_grad():
state = state.to(device)
output = self.main_q_network(state)
action = self.action_selection(last_layer_out=output)
return action
def replay(self):
if len(self.memory) < BATCH_SIZE:
return
self.batch, self.state_batch, self.action_batch, self.reward_batch, self.next_state_batch = self.make_minibatch()
self.expected_state_action_values = self.get_expected_state_action_values()
self.update_main_q_network()
def make_minibatch(self):
transitions = self.memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state).to(device)
action_batch = torch.cat(batch.action).to(device)
reward_batch = torch.cat(batch.reward).to(device)
next_state_batch = torch.cat(batch.next_state).to(device)
return batch, state_batch, action_batch, reward_batch, next_state_batch
def get_expected_state_action_values(self):
self.main_q_network.eval()
self.target_q_network.eval()
batch_out = self.main_q_network(self.state_batch)
s_a_values = torch.zeros(BATCH_SIZE).to(device)
for batch_ind in range(BATCH_SIZE):
s_a_values[batch_ind] = torch.matmul(batch_out[batch_ind], self.action_batch[batch_ind])
self.state_action_values = s_a_values
next_batch_out = self.target_q_network(self.next_state_batch)
next_s_a_values = torch.zeros(BATCH_SIZE).to(device)
for batch_ind in range(BATCH_SIZE):
temp = self.action_selection(next_batch_out[batch_ind]).to(device)
next_s_a_values[batch_ind] = torch.matmul(next_batch_out[batch_ind], temp.t())
expected_state_action_values = self.reward_batch + self.GAMMA * next_s_a_values
return expected_state_action_values
def update_main_q_network(self):
self.main_q_network.train()
loss = F.smooth_l1_loss(self.state_action_values, self.expected_state_action_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_q_network(self):
self.target_q_network.load_state_dict(self.main_q_network.state_dict())
def save_parameters(self):
torch.save(self.main_q_network.state_dict(), 'ckpt.mdl')
def reload_parameters(self):
self.main_q_network.load_state_dict(torch.load('ckpt1.mdl'))
self.target_q_network.load_state_dict(self.main_q_network.state_dict())
class BSAgent:
def __init__(self, state_num, action_num, MEC_C, File_num, D_f, learning_rate=0.0001, GAMMA=0.9):
self.brain = BSAgentBrain(state_num=state_num, action_num=action_num, MEC_C=MEC_C, File_num=File_num, D_f=D_f, learning_rate=learning_rate, GAMMA=GAMMA)
def update_q_function(self):
self.brain.replay()
def get_action(self, state, training=True):
action = self.brain.decide_action(state, training=training)
return action
def memorize(self, state, action, state_next, reward):
self.brain.memory.push(state, action, state_next, reward)
def update_target_q_function(self):
self.brain.update_target_q_network()
def save_para(self):
self.brain.save_parameters()
def load_para(self):
self.brain.reload_parameters()