forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPackAWithRowOffset.cc
219 lines (202 loc) · 7.39 KB
/
PackAWithRowOffset.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <cpuinfo.h>
#include <cassert>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include "./OptimizedKernelsAvx2.h"
#include "fbgemm/Fbgemm.h"
namespace fbgemm {
template <typename T, typename accT>
PackAWithRowOffset<T, accT>::PackAWithRowOffset(
matrix_op_t trans,
uint32_t nRow,
uint32_t nCol,
const T* smat,
uint32_t ld,
inpType* pmat,
int groups,
int32_t* row_offset,
const BlockingFactors* params)
: PackMatrix<PackAWithRowOffset<T, accT>, T, accT>(
nRow,
nCol,
pmat,
groups,
params),
trans_(trans),
smat_(smat),
ld_(ld),
row_offset_(row_offset) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
if ((!fbgemmHasAvx512VnniSupport() && !fbgemmHasAvx512Support() &&
!fbgemmHasAvx2Support())) {
assert(0 && "unknown architecure");
}
if (params) {
BaseType::brow_ = params->MCB;
BaseType::bcol_ = params->KCB;
row_interleave_B_ = params->ROW_INTERLEAVE;
} else {
if (fbgemmHasAvx512VnniSupport()) {
BaseType::brow_ = PackingTraits<T, accT, inst_set_t::avx512_vnni>::MCB;
BaseType::bcol_ = PackingTraits<T, accT, inst_set_t::avx512_vnni>::KCB;
row_interleave_B_ =
PackingTraits<T, accT, inst_set_t::avx512_vnni>::ROW_INTERLEAVE;
} else if (fbgemmHasAvx512Support()) {
BaseType::brow_ = PackingTraits<T, accT, inst_set_t::avx512>::MCB;
BaseType::bcol_ = PackingTraits<T, accT, inst_set_t::avx512>::KCB;
row_interleave_B_ =
PackingTraits<T, accT, inst_set_t::avx512>::ROW_INTERLEAVE;
} else {
// AVX2
BaseType::brow_ = PackingTraits<T, accT, inst_set_t::avx2>::MCB;
BaseType::bcol_ = PackingTraits<T, accT, inst_set_t::avx2>::KCB;
row_interleave_B_ =
PackingTraits<T, accT, inst_set_t::avx2>::ROW_INTERLEAVE;
}
}
rowOffsetAllocatedHere = false;
if (BaseType::numCols() % groups != 0) {
throw std::runtime_error(
"groups = " + std::to_string(groups) +
" does not divide numCols = " + std::to_string(BaseType::numCols()));
}
if (pmat) {
BaseType::buf_ = pmat;
} else {
BaseType::bufAllocatedHere_ = true;
BaseType::buf_ = static_cast<T*>(
fbgemmAlignedAlloc(64, BaseType::brow_ * BaseType::bcol_ * sizeof(T)));
}
if (!row_offset_) {
rowOffsetAllocatedHere = true;
row_offset_ = static_cast<int32_t*>(
fbgemmAlignedAlloc(64, BaseType::brow_ * sizeof(int32_t)));
}
}
template <typename T, typename accT>
void PackAWithRowOffset<T, accT>::pack(const block_type_t& block) {
// assert(block.row_start % BaseType::blockRowSize() == 0);
assert(block.row_size <= BaseType::blockRowSize());
assert(block.col_size <= BaseType::blockColSize());
block_type_t block_p = {block.row_start,
block.row_size,
block.col_start,
(block.col_size + row_interleave_B_ - 1) /
row_interleave_B_ * row_interleave_B_};
assert(block_p.col_size <= BaseType::blockColSize());
BaseType::packedBlock(block_p);
T* out = BaseType::getBuf();
bool tr = (trans_ == matrix_op_t::Transpose);
// accumulate into row offset?
bool row_offset_acc =
(block.col_start % (this->numCols() / this->numGroups())) != 0;
int32_t* row_offset_buf = getRowOffsetBuffer();
if (tr) {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int buf_idx = i - block.row_start;
int32_t row_sum = row_offset_acc ? row_offset_buf[buf_idx] : 0;
for (int j = block.col_start; j < block.col_start + block.col_size; ++j) {
T val = smat_[i + j * ld_];
row_sum += val;
out[buf_idx * BaseType::blockColSize() + (j - block.col_start)] = val;
}
row_offset_buf[buf_idx] = row_sum;
// zero fill
// Please see the comment in PackAMatrix.cc on zero vs zero_pt fill.
for (int j = block.col_size; j < block_p.col_size; ++j) {
out[buf_idx * BaseType::blockColSize() + j] = 0;
}
}
} else {
// reduceAvx2 only written for T == uint8_t
static_assert(
std::is_same<T, uint8_t>::value,
"PackAWithRowOffset<T, accT>::pack only works for T == uint8_t");
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int buf_idx = i - block.row_start;
memcpy(
out + buf_idx * BaseType::blockColSize(),
smat_ + i * ld_ + block.col_start,
block.col_size * sizeof(T));
// zero fill
for (int j = block.col_size; j < block_p.col_size; ++j) {
out[buf_idx * BaseType::blockColSize() + j] = 0;
}
int32_t row_sum = row_offset_acc ? row_offset_buf[buf_idx] : 0;
row_sum += reduceAvx2(smat_ + i * ld_ + block.col_start, block.col_size);
row_offset_buf[buf_idx] = row_sum;
}
}
}
template <typename T, typename accT>
int32_t PackAWithRowOffset<T, accT>::addr(int32_t r, int32_t c) const {
int32_t block_row_id = r / BaseType::blockRowSize();
int32_t brow_offset = (block_row_id * BaseType::blockCols()) *
(BaseType::blockRowSize() * BaseType::blockColSize());
int32_t block_col_id = c / BaseType::blockColSize();
int32_t bcol_offset =
block_col_id * BaseType::blockRowSize() * BaseType::blockColSize();
int32_t block_offset = brow_offset + bcol_offset;
int32_t inblock_offset =
(r % BaseType::blockRowSize()) * BaseType::blockColSize() +
(c % BaseType::blockColSize());
int32_t index = block_offset + inblock_offset;
return index;
}
template <typename T, typename accT>
void PackAWithRowOffset<T, accT>::printPackedMatrix(std::string name) {
std::cout << name << ":"
<< "[" << BaseType::numPackedRows() << ", "
<< BaseType::numPackedCols() << "]" << std::endl;
T* out = BaseType::getBuf();
for (auto r = 0; r < BaseType::numPackedRows(); ++r) {
for (auto c = 0; c < BaseType::numPackedCols(); ++c) {
T val = out[addr(r, c)];
if (std::is_integral<T>::value) {
// cast to int64 because cout doesn't print int8_t type directly
std::cout << std::setw(5) << static_cast<int64_t>(val) << " ";
} else {
std::cout << std::setw(5) << val << " ";
}
}
std::cout << std::endl;
}
std::cout << std::endl;
}
template <typename T, typename accT>
int PackAWithRowOffset<T, accT>::rowOffsetBufferSize(
const BlockingFactors* params) {
if (cpuinfo_initialize()) {
if (params) {
return params->MCB;
} else {
if (fbgemmHasAvx512VnniSupport()) {
return PackingTraits<T, accT, inst_set_t::avx512_vnni>::MCB;
} else if (fbgemmHasAvx512Support()) {
return PackingTraits<T, accT, inst_set_t::avx512>::MCB;
} else if (fbgemmHasAvx2Support()) {
return PackingTraits<T, accT, inst_set_t::avx2>::MCB;
} else {
// TODO: Have default slower path
assert(0 && "unsupported architecture");
return -1;
}
}
} else {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
}
template class PackAWithRowOffset<uint8_t, int32_t>;
template class PackAWithRowOffset<uint8_t, int16_t>;
} // namespace fbgemm