forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantUtils.cc
433 lines (397 loc) · 18.1 KB
/
QuantUtils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#define FBGEMM_EXPORTS
#include "fbgemm/QuantUtils.h"
#include <cpuinfo.h>
#include "fbgemm/Fbgemm.h"
namespace fbgemm {
using namespace std;
float TensorQuantizationParams::Min() const {
return Dequantize(0, *this);
}
float TensorQuantizationParams::Max() const {
return Dequantize((1 << precision) - 1, *this);
}
TensorQuantizationParams ChooseQuantizationParams(
float min,
float max,
int32_t qmin,
int32_t qmax,
bool preserve_sparsity,
bool force_scale_power_of_two) {
if (min < 0 && max > 0 && preserve_sparsity) {
int symmetric_qmin = -((qmax - qmin) / 2 + 1);
int symmetric_qmax = (qmax - qmin) / 2;
double max_scale =
std::max(fabs(min / symmetric_qmin), fabs(max / symmetric_qmax));
min = max_scale * symmetric_qmin;
max = max_scale * symmetric_qmax;
}
// We extend the [min, max] interval to ensure that it contains 0.
// Otherwise, we would not meet the requirement that 0 be an exactly
// representable value.
min = std::min(min, 0.f);
max = std::max(max, 0.f);
// Use double precision for intermediate computation but use single precision
// in final number to reflect the actual number used during quantization.
float scale = (static_cast<double>(max) - min) / (qmax - qmin);
// If scale is 0 or too small so its reciprocal is infinity, we arbitrary
// adjust the scale to 0.1 . We want to avoid scale's reciprocal being
// infinity because some of fbgemm code pre-computes scale's reciprocal to do
// multiplication instead of division in the time critical part of code.
if (scale == 0.0f || isinf(1.0f / scale)) {
scale = 0.1;
}
assert(scale > 0);
if (force_scale_power_of_two) {
if (scale < 1) {
scale = 1.0 / (1 << static_cast<int>(floor(log2(1.0 / scale))));
} else {
scale = 1 << static_cast<int>(ceil(log2(scale)));
}
}
// Zero-point computation.
// First the initial floating-point computation. The zero-point can be
// determined from solving an affine equation for any known pair
// (real value, corresponding quantized value).
// We know two such pairs: (rmin, qmin) and (rmax, qmax).
// The arithmetic error on the zero point computed from either pair
// will be roughly machine_epsilon * (sum of absolute values of terms)
// so we want to use the variant that adds the smaller terms.
double zero_point_from_min = qmin - min / static_cast<double>(scale);
double zero_point_from_max = qmax - max / static_cast<double>(scale);
double zero_point_from_min_error =
std::abs(qmin) + std::abs(min / static_cast<double>(scale));
double zero_point_from_max_error =
std::abs(qmax) + std::abs(max / static_cast<double>(scale));
double initial_zero_point =
zero_point_from_min_error < zero_point_from_max_error
? zero_point_from_min
: zero_point_from_max;
// for symmetric quantization (preserve_sparsity == true), we force zero_point
// to be a middle value between qmin and qmax.
// If either min or max is 0, then we just use 0 as zero_point.
if (min < 0 && max > 0 && preserve_sparsity) {
initial_zero_point = (qmin + qmax) / 2 + 1;
}
// Now we need to nudge the zero point to be an integer
// (our zero points are integer, and this is motivated by the requirement
// to be able to represent the real value "0" exactly as a quantized value,
// which is required in multiple places, for example in Im2col with zero
// padding).
int32_t nudged_zero_point = 0;
if (initial_zero_point < qmin) {
nudged_zero_point = qmin;
} else if (initial_zero_point > qmax) {
nudged_zero_point = qmax;
} else {
nudged_zero_point = nearbyint(initial_zero_point);
}
TensorQuantizationParams result;
result.scale = scale;
result.zero_point = nudged_zero_point;
return result;
}
void ChooseRequantizationMultiplier(
float real_multiplier,
int32_t* quantized_multiplier,
int* right_shift,
int requantization_multiplier_precision) {
assert(real_multiplier != 0.f);
// Assuming requantization_multiplier_precision_ = 31,
// the default right shift is 31 when the real multiplier is already
// in interval [1/2, 1).
// Multiplying a 32-bit signed integer with all 31 bits except the sign bit
// is used followed by 31-bit right shift implements multiplying with a real
// number in [1/2, 1).
// We want to utilize all 31 bits except the sign bit in the 32-bit signed
// integer to get the best accuracy.
int s = 31;
// We want to bring the real multiplier into the interval [1/2, 1).
// We can do so by multiplying it by two, and recording how many times
// we multiplied by two so that we can compensate that by a right
// shift by the same amount.
if (real_multiplier > 0.f) {
while (real_multiplier < 0.5f) {
real_multiplier *= 2.f;
s++;
}
while (real_multiplier > 1.f) {
real_multiplier /= 2.f;
s--;
}
}
// Now that the real multiplier is in [1/2, 1), we convert it
// into a fixed-point number.
int64_t q = nearbyint(
real_multiplier * (1ll << (requantization_multiplier_precision - 1)));
assert(q <= (1ll << (requantization_multiplier_precision - 1)));
// Handle the special case when the real multiplier was so close to 1
// that its fixed-point approximation was undistinguishable from 1.
// We handle this by dividing it by two, and remembering to decrement
// the right shift amount.
if (q == (1ll << (requantization_multiplier_precision - 1))) {
q /= 2;
s--;
}
assert(s >= 0);
assert(q >= 0);
assert(q <= numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q);
*right_shift = s;
assert(s < 64);
}
////////////////////////////////////////////////////////////////////////////////
// Utility functions
#define FBGEMM_SPECIALIZED_QUANTIZE(T) \
template <> \
FBGEMM_API void Quantize<T>( \
const float* src, \
T* dst, \
const int len, \
const TensorQuantizationParams& qparams, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = Quantize<T>(src[i], qparams); \
} \
}
FBGEMM_SPECIALIZED_QUANTIZE(uint16_t)
FBGEMM_SPECIALIZED_QUANTIZE(int16_t)
FBGEMM_SPECIALIZED_QUANTIZE(int32_t)
#undef FBGEMM_SPECIALIZED_QUANTIZE
#define FBGEMM_SPECIALIZED_QUANTIZE_AVX2(T) \
template <> \
FBGEMM_API void Quantize<T>( \
const float* src, \
T* dst, \
int len, \
const TensorQuantizationParams& qparams, \
int thread_id, \
int num_threads) { \
bool avx2_support = cpuinfo_initialize() && fbgemmHasAvx2Support(); \
bool fma_support = cpuinfo_has_x86_fma3(); \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
if (avx2_support && fma_support && qparams.precision == 8) { \
/* fast path */ \
QuantizeAvx2<T>(&src[i_begin], &dst[i_begin], i_end - i_begin, qparams); \
} else { \
for (std::size_t i = i_begin; i < i_end; ++i) { \
dst[i] = Quantize<T>(src[i], qparams); \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(int8_t)
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(uint8_t)
#undef FBGEMM_SPECIALIZED_QUANTIZE_AVX2
#define FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(T) \
template <> \
FBGEMM_API void QuantizeGroupwise<T, layout_t::KCX>( \
const float* src, \
int N, \
int C, \
int X, \
int G, \
const float* scales, \
const std::int32_t* zero_points, \
T* dst) { \
assert(C % G == 0); \
int C_per_G = C / G; \
for (int i = 0; i < N; ++i) { \
for (int g = 0; g < G; ++g) { \
float scale = scales[g]; \
int32_t zero_point = zero_points[g]; \
for (int c = 0; c < C / G; ++c) { \
for (int x = 0; x < X; ++x) { \
dst[(i * C + g * C_per_G + c) * X + x] = Quantize<T>( \
src[(i * C + g * C_per_G + c) * X + x], \
zero_point, \
scale, \
8 * sizeof(T)); \
} \
} \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(int8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(int32_t)
#undef FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX
template <>
FBGEMM_API void QuantizeGroupwise<uint8_t, layout_t::KCX>(
const float* src,
int K,
int C,
int X,
int G,
const float* scales,
const std::int32_t* zero_points,
uint8_t* dst) {
assert(C % G == 0);
int C_per_G = C / G;
fbgemm::TensorQuantizationParams qparams;
qparams.precision = 8 * sizeof(uint8_t);
bool takeFastPath =
cpuinfo_initialize() && fbgemmHasAvx2Support() && cpuinfo_has_x86_fma3();
for (int i = 0; i < K; ++i) {
for (int g = 0; g < G; ++g) {
qparams.scale = scales[g];
qparams.zero_point = zero_points[g];
if (takeFastPath) {
QuantizeAvx2(
src + (i * C + g * C_per_G) * X,
dst + (i * C + g * C_per_G) * X,
C_per_G * X,
qparams);
} else {
for (int c = 0; c < C / G; ++c) {
for (int x = 0; x < X; ++x) {
dst[(i * C + g * C_per_G + c) * X + x] = Quantize<uint8_t>(
src[(i * C + g * C_per_G + c) * X + x],
qparams.zero_point,
qparams.scale,
qparams.precision);
}
}
}
}
}
}
#define FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(T) \
template <> \
FBGEMM_API void QuantizeGroupwise<T, layout_t::KXC>( \
const float* src, \
int K, \
int C, \
int X, \
int G, \
const float* scales, \
const std::int32_t* zero_points, \
T* dst) { \
assert(C % G == 0); \
int C_per_G = C / G; \
for (int i = 0; i < K; ++i) { \
for (int x = 0; x < X; ++x) { \
for (int g = 0; g < G; ++g) { \
float scale = scales[g]; \
int32_t zero_point = zero_points[g]; \
for (int c = 0; c < C / G; ++c) { \
dst[(i * X + x) * C + g * C_per_G + c] = Quantize<T>( \
src[(i * X + x) * C + g * C_per_G + c], \
zero_point, \
scale, \
8 * sizeof(T)); \
} \
} \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(int8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(uint8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(int32_t)
#undef FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC
////////////////////////////////////////////////////////////////////////////////
// Requantization (pure fixed-point)
int64_t SaturatingRoundingMulWithShift(int32_t a, int32_t b, int right_shift) {
int64_t a_64(a);
int64_t b_64(b);
int64_t ab_64 = a_64 * b_64;
int64_t nudge = 1ll << (right_shift - 1);
return (ab_64 + nudge) >> right_shift;
}
#define FBGEMM_SPECIALIZED_REQUANTIZE(T) \
template <> \
FBGEMM_API void Requantize<T>( \
const int32_t* src, \
T* dst, \
const int len, \
const RequantizationParams& params, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = Requantize<T>(src[i], params); \
} \
}
FBGEMM_SPECIALIZED_REQUANTIZE(uint16_t)
FBGEMM_SPECIALIZED_REQUANTIZE(int32_t)
#undef FBGEMM_SPECIALIZED_REQUANTIZE
template <>
FBGEMM_API void Requantize<uint8_t>(
const int32_t* src,
uint8_t* dst,
const int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (params.target_qparams.precision == 8 && cpuinfo_initialize() &&
fbgemmHasAvx2Support()) {
RequantizeAvx2(&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = Requantize<uint8_t>(src[i], params);
}
}
}
template <typename T>
FBGEMM_API void RequantizeFixedPoint(
const std::int32_t* src,
T* dst,
int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (std::is_same<T, uint8_t>::value && params.target_qparams.precision == 8 &&
cpuinfo_initialize() && fbgemmHasAvx2Support()) {
RequantizeFixedPointAvx2(
&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = RequantizeFixedPoint<T>(src[i], params);
}
}
}
#define FBGEMM_SPECIALIZED_REQUANTIZE(T) \
template <> \
FBGEMM_API void RequantizeFixedPoint<T>( \
const int32_t* src, \
T* dst, \
const int len, \
const RequantizationParams& params, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = RequantizeFixedPoint<T>(src[i], params); \
} \
}
FBGEMM_SPECIALIZED_REQUANTIZE(uint16_t)
FBGEMM_SPECIALIZED_REQUANTIZE(int32_t)
#undef FBGEMM_SPECIALIZED_REQUANTIZE
template <>
FBGEMM_API void RequantizeFixedPoint<uint8_t>(
const int32_t* src,
uint8_t* dst,
const int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (params.target_qparams.precision == 8 && cpuinfo_initialize() &&
fbgemmHasAvx2Support()) {
RequantizeFixedPointAvx2(
&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = RequantizeFixedPoint<uint8_t>(src[i], params);
}
}
}
} // namespace fbgemm