The official PyTorch implementation for "Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End" presented at CVPR 2020, Seattle, USA.
[PDF] [Supplementary] [Poster]
@article{eldesokey2018propagating,
title={Propagating Confidences through CNNs for Sparse Data Regression},
author={Eldesokey, Abdelrahman and Felsberg, Michael and Khan, Fahad Shahbaz},
journal={arXiv preprint arXiv:1805.11913},
year={2018}
}
The code was tested with Python 3.7.4 and PyTorch 1.4, but it should work on any PyTorch version > 1.1
- pytorch>1.1
- json
- matplotlib
- opencv
- h5py
To download the Kitti-Depth dataset, use the provided Python script dataloaders/download_kitti_depth_rgb.py
.
Remeber to edit the script first to set download directories.
Download and extract the dataset in h5 format provided from sparse-to-dense.
wget http://datasets.lids.mit.edu/sparse-to-dense/data/nyudepthv2.tar.gz
tar -xvf nyudepthv2.tar.gz && rm -f nyudepthv2.tar.gz