The project automatically fetches the latest papers from arXiv based on keywords.
The subheadings in the README file represent the search keywords.
Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.
You can click the 'Watch' button to receive daily email notifications.
Last update: 2024-10-08
- Time Series
- LLM
- Image Restoration
- Diffusion Model
- Vision Language Model
- Photoacoustic Image
- Prompt Optimization
Title | Date | Abstract | Comment |
---|---|---|---|
Language Model Empowered Spatio-Temporal Forecasting via Physics-Aware Reprogramming | 2024-10-04 | ShowSpatio-temporal forecasting is pivotal in numerous real-world applications, including transportation planning, energy management, and climate monitoring. In this work, we aim to harness the reasoning and generalization abilities of Pre-trained Language Models (PLMs) for more effective spatio-temporal forecasting, particularly in data-scarce scenarios. However, recent studies uncover that PLMs, which are primarily trained on textual data, often falter when tasked with modeling the intricate correlations in numerical time series, thereby limiting their effectiveness in comprehending spatio-temporal data. To bridge the gap, we propose RePST, a physics-aware PLM reprogramming framework tailored for spatio-temporal forecasting. Specifically, we first propose a physics-aware decomposer that adaptively disentangles spatially correlated time series into interpretable sub-components, which facilitates PLM to understand sophisticated spatio-temporal dynamics via a divide-and-conquer strategy. Moreover, we propose a selective discrete reprogramming scheme, which introduces an expanded spatio-temporal vocabulary space to project spatio-temporal series into discrete representations. This scheme minimizes the information loss during reprogramming and enriches the representations derived by PLMs. Extensive experiments on real-world datasets show that the proposed RePST outperforms twelve state-of-the-art baseline methods, particularly in data-scarce scenarios, highlighting the effectiveness and superior generalization capabilities of PLMs for spatio-temporal forecasting. |
|
A Survey on Time-Series Pre-Trained Models | 2024-10-04 | ShowTime-Series Mining (TSM) is an important research area since it shows great potential in practical applications. Deep learning models that rely on massive labeled data have been utilized for TSM successfully. However, constructing a large-scale well-labeled dataset is difficult due to data annotation costs. Recently, pre-trained models have gradually attracted attention in the time series domain due to their remarkable performance in computer vision and natural language processing. In this survey, we provide a comprehensive review of Time-Series Pre-Trained Models (TS-PTMs), aiming to guide the understanding, applying, and studying TS-PTMs. Specifically, we first briefly introduce the typical deep learning models employed in TSM. Then, we give an overview of TS-PTMs according to the pre-training techniques. The main categories we explore include supervised, unsupervised, and self-supervised TS-PTMs. Further, extensive experiments involving 27 methods, 434 datasets, and 679 transfer learning scenarios are conducted to analyze the advantages and disadvantages of transfer learning strategies, Transformer-based models, and representative TS-PTMs. Finally, we point out some potential directions of TS-PTMs for future work. |
Accep...Accepted in the IEEE Transactions on Knowledge and Data Engineering (TKDE) |
Stabilized Neural Prediction of Potential Outcomes in Continuous Time | 2024-10-04 | ShowPatient trajectories from electronic health records are widely used to predict potential outcomes of treatments over time, which then allows to personalize care. Yet, existing neural methods for this purpose have a key limitation: while some adjust for time-varying confounding, these methods assume that the time series are recorded in discrete time. In other words, they are constrained to settings where measurements and treatments are conducted at fixed time steps, even though this is unrealistic in medical practice. In this work, we aim to predict potential outcomes in continuous time. The latter is of direct practical relevance because it allows for modeling patient trajectories where measurements and treatments take place at arbitrary, irregular timestamps. We thus propose a new method called stabilized continuous time inverse propensity network (SCIP-Net). For this, we further derive stabilized inverse propensity weights for robust prediction of the potential outcomes. To the best of our knowledge, our SCIP-Net is the first neural method that performs proper adjustments for time-varying confounding in continuous time. |
|
S7: Selective and Simplified State Space Layers for Sequence Modeling | 2024-10-04 | ShowA central challenge in sequence modeling is efficiently handling tasks with extended contexts. While recent state-space models (SSMs) have made significant progress in this area, they often lack input-dependent filtering or require substantial increases in model complexity to handle input variability. We address this gap by introducing S7, a simplified yet powerful SSM that can handle input dependence while incorporating stable reparameterization and specific design choices to dynamically adjust state transitions based on input content, maintaining efficiency and performance. We prove that this reparameterization ensures stability in long-sequence modeling by keeping state transitions well-behaved over time. Additionally, it controls the gradient norm, enabling efficient training and preventing issues like exploding or vanishing gradients. S7 significantly outperforms baselines across various sequence modeling tasks, including neuromorphic event-based datasets, Long Range Arena benchmarks, and various physical and biological time series. Overall, S7 offers a more straightforward approach to sequence modeling without relying on complex, domain-specific inductive biases, achieving significant improvements across key benchmarks. |
23 pa...23 pages, 3 figures, 11 tables. Equal contribution by Taylan Soydan and Nikola Zubi'c |
Recurrent Interpolants for Probabilistic Time Series Prediction | 2024-10-04 | ShowSequential models like recurrent neural networks and transformers have become standard for probabilistic multivariate time series forecasting across various domains. Despite their strengths, they struggle with capturing high-dimensional distributions and cross-feature dependencies. Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting. However, scalability remains a challenge. This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on stochastic interpolants and conditional generation with control features, offering insights for future developments in this dynamic field. |
|
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand | 2024-10-04 | ShowPower systems operate under uncertainty originating from multiple factors that are impossible to account for deterministically. Distributional forecasting is used to control and mitigate risks associated with this uncertainty. Recent progress in deep learning has helped to significantly improve the accuracy of point forecasts, while accurate distributional forecasting still presents a significant challenge. In this paper, we propose a novel general approach for distributional forecasting capable of predicting arbitrary quantiles. We show that our general approach can be seamlessly applied to two distinct neural architectures leading to the state-of-the-art distributional forecasting results in the context of short-term electricity demand forecasting task. We empirically validate our method on 35 hourly electricity demand time-series for European countries. Our code is available here: https://github.com/boreshkinai/any-quantile. |
|
Large Synthetic Datasets for Machine Learning Applications in Power Systems | 2024-10-04 | ShowWith the ongoing energy transition, power grids are evolving fast. They operate more and more often close to their technical limit, under more and more volatile conditions. Fast, essentially real-time computational approaches to evaluate their operational safety, stability and reliability are therefore highly desirable. Machine Learning methods have been advocated to solve this challenge, however they are heavy consumers of training and testing data, while historical operational data for real-world power grids are hard if not impossible to access. This manuscript describes an algorithmic approach for generating large datasets of power injections in electric power grids. The method allows one to generate arbitrarily large time series from the knowledge of the grid -- the admittance of its lines as well as the location, type and capacity of its power generators -- and aggregated power consumption data, such as the national load data given by ENTSO-E. The obtained datasets are statistically validated against real-world data. |
15 pa...15 pages, 8 figures, 2 tables. Dataset available at https://zenodo.org/records/13378476 |
Foundational Inference Models for Dynamical Systems | 2024-10-04 | ShowDynamical systems governed by ordinary differential equations (ODEs) serve as models for a vast number of natural and social phenomena. In this work, we offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs. Specifically, we revisit ideas from amortized inference and neural operators, and propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs. Our proposal consists of two components. First, a broad probability distribution over the space of ODE solutions, observation times and noise mechanisms, with which we generate a large, synthetic dataset of (hidden) ODE solutions, along with their noisy and sparse observations. Second, a neural recognition model that is trained offline, to map the generated time series onto the spaces of initial conditions and time derivatives of the (hidden) ODE solutions, which we then integrate to impute the missing data. We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values, each sampled from widely different dynamical systems. Likewise, we demonstrate that it can perform zero-shot imputation of missing high-dimensional data in 10 vastly different settings, spanning human motion, air quality, traffic and electricity studies, as well as Navier-Stokes simulations -- without requiring any fine-tuning. What is more, our proposal often outperforms state-of-the-art methods, which are trained on the target datasets. Our pretrained model will be available online soon. |
Title | Date | Abstract | Comment |
---|---|---|---|
GenSim2: Scaling Robot Data Generation with Multi-modal and Reasoning LLMs | 2024-10-04 | ShowRobotic simulation today remains challenging to scale up due to the human efforts required to create diverse simulation tasks and scenes. Simulation-trained policies also face scalability issues as many sim-to-real methods focus on a single task. To address these challenges, this work proposes GenSim2, a scalable framework that leverages coding LLMs with multi-modal and reasoning capabilities for complex and realistic simulation task creation, including long-horizon tasks with articulated objects. To automatically generate demonstration data for these tasks at scale, we propose planning and RL solvers that generalize within object categories. The pipeline can generate data for up to 100 articulated tasks with 200 objects and reduce the required human efforts. To utilize such data, we propose an effective multi-task language-conditioned policy architecture, dubbed proprioceptive point-cloud transformer (PPT), that learns from the generated demonstrations and exhibits strong sim-to-real zero-shot transfer. Combining the proposed pipeline and the policy architecture, we show a promising usage of GenSim2 that the generated data can be used for zero-shot transfer or co-train with real-world collected data, which enhances the policy performance by 20% compared with training exclusively on limited real data. |
CoRL ...CoRL 2024. Project website: https://gensim2.github.io/ |
Retrieval-Augmented Hierarchical in-Context Reinforcement Learning and Hindsight Modular Reflections for Task Planning with LLMs | 2024-10-04 | ShowLarge Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy. |
|
Aligning LLMs with Individual Preferences via Interaction | 2024-10-04 | ShowAs large language models (LLMs) demonstrate increasingly advanced capabilities, aligning their behaviors with human values and preferences becomes crucial for their wide adoption. While previous research focuses on general alignment to principles such as helpfulness, harmlessness, and honesty, the need to account for individual and diverse preferences has been largely overlooked, potentially undermining customized human experiences. To address this gap, we train LLMs that can ''interact to align'', essentially cultivating the meta-skill of LLMs to implicitly infer the unspoken personalized preferences of the current user through multi-turn conversations, and then dynamically align their following behaviors and responses to these inferred preferences. Our approach involves establishing a diverse pool of 3,310 distinct user personas by initially creating seed examples, which are then expanded through iterative self-generation and filtering. Guided by distinct user personas, we leverage multi-LLM collaboration to develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures. Finally, we apply supervised fine-tuning and reinforcement learning to enhance LLMs using this dataset. For evaluation, we establish the ALOE (ALign With CustOmized PrEferences) benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations. Experimental results demonstrate the effectiveness of our method in enabling dynamic, personalized alignment via interaction. |
The c...The code and dataset are made public at https://github.com/ShujinWu-0814/ALOE |
SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales | 2024-10-04 | ShowLarge language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work elicits confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present the advanced SaySelf, a training framework that teaches LLMs to express more accurate fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results in both in-distribution and out-of-distribution datasets demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration. The code is made public at https://github.com/xu1868/SaySelf. |
EMNLP 2024 Main |
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation | 2024-10-04 | ShowGiven the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% |
|
MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making | 2024-10-04 | ShowFoundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents) that helps address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes adapted to tasks of varying complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and medical diagnosis benchmarks. MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant improvement of up to 6.5% (p < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy improvement of 11.8%. Our code can be found at https://github.com/mitmedialab/MDAgents. |
|
Probabilities of Chat LLMs Are Miscalibrated but Still Predict Correctness on Multiple-Choice Q&A | 2024-10-04 | ShowWe study 14 large language models (LLMs) fine-tuned for chat and find that their maximum softmax probabilities (MSPs) are consistently miscalibrated on multiple-choice Q&A. However, those MSPs might still encode useful uncertainty information. Specifically, we hypothesized that wrong answers would be associated with smaller MSPs compared to correct answers. Via rigororous statistical testing, we show that this hypothesis holds for models which perform well on the underlying Q&A task. We also find a strong direction correlation between Q&A accuracy and MSP correctness prediction, while finding no correlation between Q&A accuracy and calibration error. This suggests that within the current fine-tuning paradigm, we can expect correctness prediction but not calibration to improve as LLM capabilities progress. To demonstrate the utility of correctness prediction, we show that when models have the option to abstain, performance can be improved by selectively abstaining based on the MSP of the initial model response, using only a small amount of labeled data to choose the MSP threshold. |
|
Towards Linguistically-Aware and Language-Independent Tokenization for Large Language Models (LLMs) | 2024-10-04 | ShowThis paper presents a comprehensive study on the tokenization techniques employed by state-of-the-art large language models (LLMs) and their implications on the cost and availability of services across different languages, especially low resource languages. The analysis considers multiple LLMs, including GPT-4 (using cl100k_base embeddings), GPT-3 (with p50k_base embeddings), and DaVinci (employing r50k_base embeddings), as well as the widely used BERT base tokenizer. The study evaluates the tokenization variability observed across these models and investigates the challenges of linguistic representation in subword tokenization. The research underscores the importance of fostering linguistically-aware development practices, especially for languages that are traditionally under-resourced. Moreover, this paper introduces case studies that highlight the real-world implications of tokenization choices, particularly in the context of electronic health record (EHR) systems. This research aims to promote generalizable Internationalization (I18N) practices in the development of AI services in this domain and beyond, with a strong emphasis on inclusivity, particularly for languages traditionally underrepresented in AI applications. |
|
Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy | 2024-10-04 | ShowFactual inconsistencies pose a significant hurdle for the faithful summarization by generative models. While a major direction to enhance inconsistency detection is to derive stronger Natural Language Inference (NLI) models, we propose an orthogonal aspect that underscores the importance of incorporating task-specific taxonomy into the inference. To this end, we consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs. Extensive experiments on ten datasets of five distinct domains suggest that, zero-shot LLM inference could benefit from the explicit solution space depicted by the error type taxonomy, and achieves state-of-the-art performance overall, surpassing specialized non-LLM baselines, as well as recent LLM baselines. We further distill models that fuse the taxonomy into parameters through our designed prompt completions and supervised training strategies, efficiently substituting state-of-the-art zero-shot inference with much larger LLMs. |
Accep...Accepted to EMNLP 2024 Findings |
Ward: Provable RAG Dataset Inference via LLM Watermarks | 2024-10-04 | ShowRetrieval-Augmented Generation (RAG) improves LLMs by enabling them to incorporate external data during generation. This raises concerns for data owners regarding unauthorized use of their content in RAG systems. Despite its importance, the challenge of detecting such unauthorized usage remains underexplored, with existing datasets and methodologies from adjacent fields being ill-suited for its study. In this work, we take several steps to bridge this gap. First, we formalize this problem as (black-box) RAG Dataset Inference (RAG-DI). To facilitate research on this challenge, we further introduce a novel dataset specifically designed for benchmarking RAG-DI methods under realistic conditions, and propose a set of baseline approaches. Building on this foundation, we introduce Ward, a RAG-DI method based on LLM watermarks that enables data owners to obtain rigorous statistical guarantees regarding the usage of their dataset in a RAG system. In our experimental evaluation, we show that Ward consistently outperforms all baselines across many challenging settings, achieving higher accuracy, superior query efficiency and robustness. Our work provides a foundation for future studies of RAG-DI and highlights LLM watermarks as a promising approach to this problem. |
|
Buckle Up: Robustifying LLMs at Every Customization Stage via Data Curation | 2024-10-04 | ShowLarge language models (LLMs) are extensively adapted for downstream applications through a process known as "customization," with fine-tuning being a common method for integrating domain-specific expertise. However, recent studies have revealed a vulnerability that tuning LLMs with malicious samples can compromise their robustness and amplify harmful content, an attack known as "jailbreaking." To mitigate such attack, we propose an effective defensive framework utilizing data curation to revise commonsense texts and enhance their safety implication from the perspective of LLMs. The curated texts can mitigate jailbreaking attacks at every stage of the customization process: before customization to immunize LLMs against future jailbreak attempts, during customization to neutralize jailbreaking risks, or after customization to restore the compromised models. Since the curated data strengthens LLMs through the standard fine-tuning workflow, we do not introduce additional modules during LLM inference, thereby preserving the original customization process. Experimental results demonstrate a substantial reduction in jailbreaking effects, with up to a 100% success in generating responsible responses. Notably, our method is effective even with commonsense texts, which are often more readily available than safety-relevant data. With the every-stage defensive framework and supporting experimental performance, this work represents a significant advancement in mitigating jailbreaking risks and ensuring the secure customization of LLMs. |
|
"Seeing the Big through the Small": Can LLMs Approximate Human Judgment Distributions on NLI from a Few Explanations? | 2024-10-04 | ShowHuman label variation (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons. In Natural Language Inference (NLI) earlier approaches to capturing HLV involve either collecting annotations from many crowd workers to represent human judgment distribution (HJD) or use expert linguists to provide detailed explanations for their chosen labels. While the former method provides denser HJD information, obtaining it is resource-intensive. In contrast, the latter offers richer textual information but it is challenging to scale up to many human judges. Besides, large language models (LLMs) are increasingly used as evaluators ("LLM judges") but with mixed results, and few works aim to study HJDs. This study proposes to exploit LLMs to approximate HJDs using a small number of expert labels and explanations. Our experiments show that a few explanations significantly improve LLMs' ability to approximate HJDs with and without explicit labels, thereby providing a solution to scale up annotations for HJD. However, fine-tuning smaller soft-label aware models with the LLM-generated model judgment distributions (MJDs) presents partially inconsistent results: while similar in distance, their resulting fine-tuned models and visualized distributions differ substantially. We show the importance of complementing instance-level distance measures with a global-level shape metric and visualization to more effectively evaluate MJDs against human judgment distributions. |
Accep...Accepted by EMNLP 2024 Findings, 24 pages, 9 figures |
A SMART Mnemonic Sounds like "Glue Tonic": Mixing LLMs with Student Feedback to Make Mnemonic Learning Stick | 2024-10-04 | ShowKeyword mnemonics are memorable explanations that link new terms to simpler keywords. Prior work generates mnemonics for students, but they do not train models using mnemonics students prefer and aid learning. We build SMART, a mnemonic generator trained on feedback from real students learning new terms. To train SMART, we first fine-tune LLaMA-2 on a curated set of user-written mnemonics. We then use LLM alignment to enhance SMART: we deploy mnemonics generated by SMART in a flashcard app to find preferences on mnemonics students favor. We gather 2684 preferences from 45 students across two types: expressed (inferred from ratings) and observed (inferred from student learning), yielding three key findings. First, expressed and observed preferences disagree; what students think is helpful does not always capture what is truly helpful. Second, Bayesian models can synthesize complementary data from multiple preference types into a single effectiveness signal. SMART is tuned via Direct Preference Optimization on this signal, which resolves ties and missing labels in the typical method of pairwise comparisons, augmenting data for LLM output quality gains. Third, mnemonic experts assess SMART as matching GPT-4 at much lower deployment costs, showing the utility of capturing diverse student feedback to align LLMs in education. |
EMNLP 2024 |
Flow of Reasoning:Training LLMs for Divergent Problem Solving with Minimal Examples | 2024-10-04 | ShowThe ability to generate diverse solutions to a given problem is a hallmark of human creativity. This divergent reasoning is also crucial for machines, enhancing their robustness and enabling them to assist humans in many applications such as scientific discovery. However, existing approaches to multi-step reasoning with large language models (LLMs) have mostly focused only on reasoning accuracy, without further discovering more diverse valid solutions. For example, supervised fine-tuning can improve LLM reasoning quality, but requires extensive supervised data to capture the full range of possible solutions. Reinforcement learning aims to find limited highest-reward solutions while neglecting the solution diversity. To fill this gap, we propose Flow of Reasoning (FoR), an efficient diversity-seeking LLM finetuning method aimed at improving reasoning quality and diversity with minimal data. FoR formulates multi-step LLM reasoning as a Markovian flow on a DAG-structured reasoning graph. This formulation allows us to incorporate and adapt principled GFlowNet approaches, for finetuning LLMs to sample diverse reasoning paths with probabilities proportional to the (unnormalized) reward of target problems. Extensive experiments show that, with limited training examples (e.g., 15 examples), FoR enables the discovery of diverse, creative, high-quality solutions, greatly outperforming a wide range of existing inference and training methods across five challenging puzzle-solving tasks, including BlocksWorld (embodied reasoning), Game24 (math puzzle solving), Rubik's Cube (spatial reasoning), 1D-ARC (abstraction reasoning), and PrOntoQA (logical reasoning). Code is available at https://github.com/Yu-Fangxu/FoR. |
|
Towards Reproducible LLM Evaluation: Quantifying Uncertainty in LLM Benchmark Scores | 2024-10-04 | ShowLarge language models (LLMs) are stochastic, and not all models give deterministic answers, even when setting temperature to zero with a fixed random seed. However, few benchmark studies attempt to quantify uncertainty, partly due to the time and cost of repeated experiments. We use benchmarks designed for testing LLMs' capacity to reason about cardinal directions to explore the impact of experimental repeats on mean score and prediction interval. We suggest a simple method for cost-effectively quantifying the uncertainty of a benchmark score and make recommendations concerning reproducible LLM evaluation. |
4 pages, 1 figure |
How Much Can RAG Help the Reasoning of LLM? | 2024-10-04 | ShowRetrieval-Augmented Generation (RAG) has gained significant popularity in modern Large Language Models (LLMs) due to its effectiveness in introducing new knowledge and reducing hallucinations. However, the deep understanding of RAG remains limited, how does RAG help the reasoning process and can RAG help improve the reasoning capability remains question. While external documents are typically considered as a method to incorporate domain-specific information, they also contain intermediate reasoning results related to the query, this suggests that documents could enhance the reasoning capability of LLMs, which has not been previously explored. In this paper, we investigate this issue in depth and find that while RAG can assist with reasoning, the help is limited. If we conceptualize the reasoning process as a tree with fixed depth, then RAG struggles to assist LLMs in performing deeper reasoning. Additionally, the information in the documents requires preprocessing to filter out noise. We demonstrate that this preprocessing is difficult to achieve simply fine-tuning of the LLM, it often necessitates numerous additional transformer layers to solve the problem. To simplify the problem, we propose DPrompt tuning, which effectively resolves the issue within just limited transformer layers, leading to improved performance. |
|
Soda-Eval: Open-Domain Dialogue Evaluation in the age of LLMs | 2024-10-04 | ShowAlthough human evaluation remains the gold standard for open-domain dialogue evaluation, the growing popularity of automated evaluation using Large Language Models (LLMs) has also extended to dialogue. However, most frameworks leverage benchmarks that assess older chatbots on aspects such as fluency and relevance, which are not reflective of the challenges associated with contemporary models. In fact, a qualitative analysis on Soda, a GPT-3.5 generated dialogue dataset, suggests that current chatbots may exhibit several recurring issues related to coherence and commonsense knowledge, but generally produce highly fluent and relevant responses. Noting the aforementioned limitations, this paper introduces Soda-Eval, an annotated dataset based on Soda that covers over 120K turn-level assessments across 10K dialogues, where the annotations were generated by GPT-4. Using Soda-Eval as a benchmark, we then study the performance of several open-access instruction-tuned LLMs, finding that dialogue evaluation remains challenging. Fine-tuning these models improves performance over few-shot inferences, both in terms of correlation and explanation. |
Accep...Accepted to EMNLP2024 (findings) |
Is Safer Better? The Impact of Guardrails on the Argumentative Strength of LLMs in Hate Speech Countering | 2024-10-04 | ShowThe potential effectiveness of counterspeech as a hate speech mitigation strategy is attracting increasing interest in the NLG research community, particularly towards the task of automatically producing it. However, automatically generated responses often lack the argumentative richness which characterises expert-produced counterspeech. In this work, we focus on two aspects of counterspeech generation to produce more cogent responses. First, by investigating the tension between helpfulness and harmlessness of LLMs, we test whether the presence of safety guardrails hinders the quality of the generations. Secondly, we assess whether attacking a specific component of the hate speech results in a more effective argumentative strategy to fight online hate. By conducting an extensive human and automatic evaluation, we show how the presence of safety guardrails can be detrimental also to a task that inherently aims at fostering positive social interactions. Moreover, our results show that attacking a specific component of the hate speech, and in particular its implicit negative stereotype and its hateful parts, leads to higher-quality generations. |
To ap...To appear in Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (long paper) |
CoCoLoFa: A Dataset of News Comments with Common Logical Fallacies Written by LLM-Assisted Crowds | 2024-10-04 | ShowDetecting logical fallacies in texts can help users spot argument flaws, but automating this detection is not easy. Manually annotating fallacies in large-scale, real-world text data to create datasets for developing and validating detection models is costly. This paper introduces CoCoLoFa, the largest known logical fallacy dataset, containing 7,706 comments for 648 news articles, with each comment labeled for fallacy presence and type. We recruited 143 crowd workers to write comments embodying specific fallacy types (e.g., slippery slope) in response to news articles. Recognizing the complexity of this writing task, we built an LLM-powered assistant into the workers' interface to aid in drafting and refining their comments. Experts rated the writing quality and labeling validity of CoCoLoFa as high and reliable. BERT-based models fine-tuned using CoCoLoFa achieved the highest fallacy detection (F1=0.86) and classification (F1=0.87) performance on its test set, outperforming the state-of-the-art LLMs. Our work shows that combining crowdsourcing and LLMs enables us to more effectively construct datasets for complex linguistic phenomena that crowd workers find challenging to produce on their own. |
In Pr...In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024) |
Logistic Regression makes small LLMs strong and explainable "tens-of-shot" classifiers | 2024-10-04 | ShowFor simple classification tasks, we show that users can benefit from the advantages of using small, local, generative language models instead of large commercial models without a trade-off in performance or introducing extra labelling costs. These advantages, including those around privacy, availability, cost, and explainability, are important both in commercial applications and in the broader democratisation of AI. Through experiments on 17 sentence classification tasks (2-4 classes), we show that penalised logistic regression on the embeddings from a small LLM equals (and usually betters) the performance of a large LLM in the "tens-of-shot" regime. This requires no more labelled instances than are needed to validate the performance of the large LLM. Finally, we extract stable and sensible explanations for classification decisions. |
48 pages, 24 figures |
A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation | 2024-10-04 | ShowThis paper proposes a novel approach to evaluate Counter Narrative (CN) generation using a Large Language Model (LLM) as an evaluator. We show that traditional automatic metrics correlate poorly with human judgements and fail to capture the nuanced relationship between generated CNs and human perception. To alleviate this, we introduce a model ranking pipeline based on pairwise comparisons of generated CNs from different models, organized in a tournament-style format. The proposed evaluation method achieves a high correlation with human preference, with a |
|
Is In-Context Learning Sufficient for Instruction Following in LLMs? | 2024-10-04 | ShowIn-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment. |
Prepr...Preprint. Code at https://github.com/tml-epfl/icl-alignment |
Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning | 2024-10-04 | ShowModel editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM's input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed. |
16 pa...16 pages, 4 figures, 6 tables |
Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition | 2024-10-04 | ShowWe introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions, and calls the agent for audio generation. Consequently, Audio-Agent generates high-quality audio that is closely aligned with the provided text or video while also supporting variable-length generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with generated audio, a process that can be tedious and time-consuming. We propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions to bridge video and audio modality. Thus our framework provides a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training. |
|
Investigating LLMs as Voting Assistants via Contextual Augmentation: A Case Study on the European Parliament Elections 2024 | 2024-10-04 | ShowIn light of the recent 2024 European Parliament elections, we are investigating if LLMs can be used as Voting Advice Applications (VAAs). We audit MISTRAL and MIXTRAL models and evaluate their accuracy in predicting the stance of political parties based on the latest "EU and I" voting assistance questionnaire. Furthermore, we explore alternatives to improve models' performance by augmenting the input context via Retrieval-Augmented Generation (RAG) relying on web search, and Self-Reflection using staged conversations that aim to re-collect relevant content from the model's internal memory. We find that MIXTRAL is highly accurate with an 82% accuracy on average with a significant performance disparity across different political groups (50-95%). Augmenting the input context with expert-curated information can lead to a significant boost of approx. 9%, which remains an open challenge for automated RAG approaches, even considering curated content. |
accep...accepted to EMNLP 2024 as a short paper |
LUQ: Long-text Uncertainty Quantification for LLMs | 2024-10-04 | ShowLarge Language Models (LLMs) have demonstrated remarkable capability in a variety of NLP tasks. However, LLMs are also prone to generate nonfactual content. Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model's confidence on its generation, thereby aiding in the mitigation of nonfactual outputs. Existing research on UQ predominantly targets short text generation, typically yielding brief, word-limited responses. However, real-world applications frequently necessitate much longer responses. Our study first highlights the limitations of current UQ methods in handling long text generation. We then introduce \textsc{Luq} and its two variations, a series of novel sampling-based UQ approaches specifically designed for long text. Our findings reveal that \textsc{Luq} outperforms existing baseline methods in correlating with the model's factuality scores (negative coefficient of -0.85 observed for Gemini Pro). To further improve the factuality of LLM responses, we propose \textsc{Luq-Ensemble}, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty. The ensembling method greatly improves the response factuality upon the best standalone LLM. |
EMNLP 2024 Main |
Showing LLM-Generated Code Selectively Based on Confidence of LLMs | 2024-10-04 | ShowLarge Language Models (LLMs) have shown impressive abilities in code generation, but they may generate erroneous programs. Reading a program takes ten times longer than writing it. Showing these erroneous programs to developers will waste developers' energies and introduce security risks to software. To address the above limitations, we propose HonestCoder, a novel LLM-based code generation approach. HonestCoder selectively shows the generated programs to developers based on LLMs' confidence. The confidence provides valuable insights into the correctness of generated programs. To achieve this goal, we propose a novel approach to estimate LLMs' confidence in code generation. It estimates confidence by measuring the multi-modal similarity between LLMs-generated programs. We collect and release a multilingual benchmark named TruthCodeBench, which consists of 2,265 samples and covers two popular programming languages (i.e., Python and Java). We apply HonestCoder to four popular LLMs (e.g., DeepSeek-Coder and Code Llama) and evaluate it on TruthCodeBench. Based on the experiments, we obtain the following insights. (1) HonestCoder can effectively estimate LLMs' confidence and accurately determine the correctness of generated programs. For example, HonestCoder outperforms the state-of-the-art baseline by 27.79% in AUROC and 63.74% in AUCPR. (2) HonestCoder can decrease the number of erroneous programs shown to developers. Compared to eight baselines, it can show more correct programs and fewer erroneous programs to developers. (3) Compared to showing code indiscriminately, HonestCoder only adds slight time overhead (approximately 0.4 seconds per requirement). (4) We discuss future directions to facilitate the application of LLMs in software development. We hope this work can motivate broad discussions about measuring the reliability of LLMs' outputs in performing code-related tasks. |
|
Middleware for LLMs: Tools Are Instrumental for Language Agents in Complex Environments | 2024-10-04 | ShowThe applications of large language models (LLMs) have expanded well beyond the confines of text processing, signaling a new era where LLMs are envisioned as generalist agents capable of operating within complex environments. These environments are often highly expansive, making it impossible for the LLM to process them within its short-term memory. Motivated by recent research on extending the capabilities of LLMs with tools, we seek to investigate the intriguing potential of tools to augment LLMs in handling such complexity by introducing a novel class of tools, termed middleware, to aid in the proactive exploration within these massive environments. Such specialized tools can serve as a middleware layer shielding the LLM from environmental complexity. In two representative complex environments -- knowledge bases (KBs) and databases -- we demonstrate the significant potential of augmenting language agents with tools in complex environments. Notably, equipped with the middleware, GPT-4 achieves 2.8X the performance of the best baseline in tasks requiring access to database content and 2.2X in KB tasks. Our findings illuminate the path for advancing language agents in real-world applications. |
EMNLP...EMNLP'2024; 18 pages, 8 figures, 8 tables |
EXAQ: Exponent Aware Quantization For LLMs Acceleration | 2024-10-04 | ShowQuantization has established itself as the primary approach for decreasing the computational and storage expenses associated with Large Language Models (LLMs) inference. The majority of current research emphasizes quantizing weights and activations to enable low-bit general-matrix-multiply (GEMM) operations, with the remaining non-linear operations executed at higher precision. In our study, we discovered that following the application of these techniques, the primary bottleneck in LLMs inference lies in the softmax layer. The softmax operation comprises three phases: exponent calculation, accumulation, and normalization, Our work focuses on optimizing the first two phases. We propose an analytical approach to determine the optimal clipping value for the input to the softmax function, enabling sub-4-bit quantization for LLMs inference. This method accelerates the calculations of both |
|
Divide-or-Conquer? Which Part Should You Distill Your LLM? | 2024-10-04 | ShowRecent methods have demonstrated that Large Language Models (LLMs) can solve reasoning tasks better when they are encouraged to solve subtasks of the main task first. In this paper we devise a similar strategy that breaks down reasoning tasks into a problem decomposition phase and a problem solving phase and show that the strategy is able to outperform a single stage solution. Further, we hypothesize that the decomposition should be easier to distill into a smaller model compared to the problem solving because the latter requires large amounts of domain knowledge while the former only requires learning general problem solving strategies. We propose methods to distill these two capabilities and evaluate their impact on reasoning outcomes and inference cost. We find that we can distill the problem decomposition phase and at the same time achieve good generalization across tasks, datasets, and models. However, it is harder to distill the problem solving capability without losing performance and the resulting distilled model struggles with generalization. These results indicate that by using smaller, distilled problem decomposition models in combination with problem solving LLMs we can achieve reasoning with cost-efficient inference and local adaptation. |
Findi...Findings of the Association for Computational Linguistics: EMNLP 2024 |
Can Watermarked LLMs be Identified by Users via Crafted Prompts? | 2024-10-04 | ShowText watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work is the first to investigate the imperceptibility of watermarked LLMs. We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts to the LLM. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys. |
25 pa...25 pages, 5 figures, 8 tables |
BPO: Staying Close to the Behavior LLM Creates Better Online LLM Alignment | 2024-10-04 | ShowDirect alignment from preferences (DAP) has emerged as a promising paradigm for aligning large language models (LLMs) to human desiderata from pre-collected, offline preference datasets. While recent studies indicate that existing offline DAP methods can directly benefit from online training samples, we highlight the need to develop specific online DAP algorithms to fully harness the power of online training. Specifically, we identify that the learned LLM should adhere to the proximity of the behavior LLM, which collects the training samples. To this end, we propose online Preference Optimization in proximity to the Behavior LLM (BPO), emphasizing the importance of constructing a proper trust region for LLM alignment. We conduct extensive experiments to validate the effectiveness and applicability of our approach by integrating it with various DAP methods, resulting in significant performance improvements across a wide range of tasks when training with the same amount of preference data. Even when only introducing one additional data collection phase, our online BPO improves its offline DAP baseline from 72.0% to 80.2% on TL;DR and from 82.2% to 89.1% on Anthropic Helpfulness in terms of win rate against human reference text. |
Wenda...Wenda Xu and Jiachen Li contributed equally. Accepted by EMNLP 2024 |
Aligners: Decoupling LLMs and Alignment | 2024-10-04 | ShowLarge Language Models (LLMs) need to be aligned with human expectations to ensure their safety and utility in most applications. Alignment is challenging, costly, and needs to be repeated for every LLM and alignment criterion. We propose to decouple LLMs and alignment by training aligner models that can be used to align any LLM for a given criteria on an as-needed basis, thus also reducing the potential negative impacts of alignment on performance. Our recipe for training the aligner models solely relies on synthetic data generated with a (prompted) LLM and can be easily adjusted for a variety of alignment criteria. We use the same synthetic data to train inspectors, binary miss-alignment classification models to guide a "squad" of multiple aligners. Our empirical results demonstrate consistent improvements when applying aligner squad to various LLMs, including chat-aligned models, across several instruction-following and red-teaming datasets. |
Short...Short version accepted as a Tiny Paper at the International Conference on Learning Representations (ICLR) 2024. Long version accepted to the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2024 Findings |
Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs | 2024-10-04 | ShowAlthough Large Language Models (LLMs) have demonstrated significant capabilities in executing complex tasks in a zero-shot manner, they are susceptible to jailbreak attacks and can be manipulated to produce harmful outputs. Recently, a growing body of research has categorized jailbreak attacks into token-level and prompt-level attacks. However, previous work primarily overlooks the diverse key factors of jailbreak attacks, with most studies concentrating on LLM vulnerabilities and lacking exploration of defense-enhanced LLMs. To address these issues, we evaluate the impact of various attack settings on LLM performance and provide a baseline benchmark for jailbreak attacks, encouraging the adoption of a standardized evaluation framework. Specifically, we evaluate the eight key factors of implementing jailbreak attacks on LLMs from both target-level and attack-level perspectives. We further conduct seven representative jailbreak attacks on six defense methods across two widely used datasets, encompassing approximately 354 experiments with about 55,000 GPU hours on A800-80G. Our experimental results highlight the need for standardized benchmarking to evaluate these attacks on defense-enhanced LLMs. Our code is available at https://github.com/usail-hkust/Bag_of_Tricks_for_LLM_Jailbreaking. |
Accep...Accepted by NeurIPS 2024 |
DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer's Disease Questions with Scientific Literature | 2024-10-04 | ShowRecent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer's Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM. We will release the code and data at https://github.com/David-Li0406/DALK. |
Accep...Accepted by EMNLP 2024 Findings |
Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter? | 2024-10-04 | ShowSolving grid puzzles involves a significant amount of logical reasoning. Hence, it is a good domain to evaluate the reasoning capability of a model which can then guide us to improve the reasoning ability of models. However, most existing works evaluate only the final predicted answer of a puzzle, without delving into an in-depth analysis of the LLMs' reasoning chains (such as where they falter) or providing any finer metrics to evaluate them. Since LLMs may rely on simple heuristics or artifacts to predict the final answer, it is crucial to evaluate the generated reasoning chain beyond overall correctness measures, for accurately evaluating the reasoning abilities of LLMs. To this end, we first develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities. Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2. Then, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains. Evaluating reasoning chains from LLMs leads to several interesting findings. We further show that existing prompting methods used for enhancing models' reasoning abilities do not improve performance on GridPuzzle. This highlights the importance of understanding fine-grained errors and presents a challenge for future research to enhance LLMs' puzzle-solving abilities by developing methods that address these errors. Data and source code are available at https://github.com/Mihir3009/GridPuzzle. |
Accep...Accepted at EMNLP 2024 Main |
Connecting the Dots: Evaluating Abstract Reasoning Capabilities of LLMs Using the New York Times Connections Word Game | 2024-10-04 | ShowThe New York Times Connections game has emerged as a popular and challenging pursuit for word puzzle enthusiasts. We collect 200 Connections games to evaluate the performance of state-of-the-art large language models (LLMs) against expert and novice human players. Our results show that even the best-performing LLM, GPT-4o, which has otherwise shown impressive reasoning abilities on a wide variety of benchmarks, can only fully solve 8% of the games. Compared to GPT-4o, novice and expert players perform better, with expert human players significantly outperforming GPT-4o. To deepen our understanding we create a taxonomy of the knowledge types required to successfully categorize words in the Connections game, revealing that LLMs struggle with associative, encyclopedic, and linguistic knowledge. Our findings establish the New York Times Connections game as a challenging benchmark for evaluating abstract reasoning capabilities in humans and AI systems. |
|
I Learn Better If You Speak My Language: Understanding the Superior Performance of Fine-Tuning Large Language Models with LLM-Generated Responses | 2024-10-04 | ShowThis paper explores an intriguing observation: fine-tuning a large language model (LLM) with responses generated by a LLM often yields better results than using responses generated by humans, particularly in reasoning tasks. We conduct an in-depth investigation to understand why this occurs. Contrary to the common belief that these instances is due to the more detailed nature of LLM-generated content, our study identifies another contributing factor: an LLM is inherently more "familiar" with LLM generated responses. This familiarity is evidenced by lower perplexity before fine-tuning. We design a series of experiments to understand the impact of the "familiarity" and our conclusion reveals that this "familiarity" significantly impacts learning performance. Training with LLM-generated responses not only enhances performance but also helps maintain the model's capabilities in other reasoning tasks after fine-tuning on a specific task. |
The p...The paper has been accepted to EMNLP 2024 (Main Conference) |
Can LLMs Generate Diverse Molecules? Towards Alignment with Structural Diversity | 2024-10-04 | ShowRecent advancements in large language models (LLMs) have demonstrated impressive performance in generating molecular structures as drug candidates, which offers significant potential to accelerate drug discovery. However, the current LLMs overlook a critical requirement for drug discovery: proposing a diverse set of molecules. This diversity is essential for improving the chances of finding a viable drug, as it provides alternative molecules that may succeed where others fail in wet-lab or clinical validations. Despite such a need for diversity, the LLMs often output structurally similar molecules from a given prompt. While decoding schemes like beam search may enhance textual diversity, this often does not align with molecular structural diversity. In response, we propose a new method for fine-tuning molecular generative LLMs to autoregressively generate a set of structurally diverse molecules, where each molecule is generated by conditioning on the previously generated molecules. Our approach consists of two stages: (1) supervised fine-tuning to adapt LLMs to autoregressively generate molecules in a sequence and (2) reinforcement learning to maximize structural diversity within the generated molecules. Our experiments show that (1) our fine-tuning approach enables the LLMs to better discover diverse molecules compared to existing decoding schemes and (2) our fine-tuned model outperforms other representative LLMs in generating diverse molecules, including the ones fine-tuned on chemical domains. |
|
Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model | 2024-10-04 | ShowEnhancing the reasoning capabilities of large language models (LLMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making. Humans excel at these tasks by leveraging deliberate planning with an internal world model to simulate the potential outcomes of various actions. Inspired by this, we propose a novel multi-step reasoning framework for LLMs, referred to as Structure-aware Planning with Accurate World Model (SWAP). Unlike previous approaches that rely solely on Chain-of-Thought (CoT) reasoning in natural language, SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps. Moreover, SWAP overcomes the challenge of accurate world state predictions in complex reasoning tasks by introducing a Generator-Discriminator architecture, which enables more reliable world modeling. Specifically, the generator predicts the next state, and the discriminator ensures alignment with the logical consistency required by the problem context. SWAP also encourages the policy model to explore a broad range of potential actions to prevent premature convergence. By resolving the bottlenecks of generation diversity for both actions and states using diversity-based modeling (DBM) and improving discrimination accuracy through contrastive ranking (CR), SWAP significantly enhances the reasoning performance of LLMs. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP achieves substantial improvements over the baselines and consistently outperforms existing LLMs of similar sizes. |
|
AIME: AI System Optimization via Multiple LLM Evaluators | 2024-10-04 | ShowText-based AI system optimization typically involves a feedback loop scheme where a single LLM generates an evaluation in natural language of the current output to improve the next iteration's output. However, in this work, we empirically demonstrate that for a practical and complex task (code generation) with multiple criteria to evaluate, utilizing only one LLM evaluator tends to let errors in generated code go undetected, thus leading to incorrect evaluations and ultimately suboptimal test case performance. Motivated by this failure case, we assume there exists an optimal evaluation policy that samples an evaluation between response and ground truth. We then theoretically prove that a linear combination of multiple evaluators can approximate this optimal policy. From this insight, we propose AI system optimization via Multiple LLM Evaluators (AIME). AIME is an evaluation protocol that utilizes multiple LLMs that each independently generate an evaluation on separate criteria and then combine them via concatenation. We provide an extensive empirical study showing AIME outperforming baseline methods in code generation tasks, with up to |
21 pa...21 pages, 10 Figures, 4 Tables |
Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge | 2024-10-04 | ShowLLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications. |
|
Is Factuality Enhancement a Free Lunch For LLMs? Better Factuality Can Lead to Worse Context-Faithfulness | 2024-10-04 | ShowAs the modern tools of choice for text understanding and generation, large language models (LLMs) are expected to accurately output answers by leveraging the input context. This requires LLMs to possess both context-faithfulness and factual accuracy. Extensive efforts have been made to enable better outputs from LLMs by mitigating hallucinations through factuality enhancement methods. However, they also pose risks of hindering context-faithfulness, as factuality enhancement can lead LLMs to become overly confident in their parametric knowledge, causing them to overlook the relevant input context. In this work, we argue that current factuality enhancement methods can significantly undermine the context-faithfulness of LLMs. We first revisit the current factuality enhancement methods and evaluate their effectiveness in enhancing factual accuracy. Next, we evaluate their performance on knowledge editing tasks to assess the potential impact on context-faithfulness. The experimental results reveal that while these methods may yield inconsistent improvements in factual accuracy, they also cause a more severe decline in context-faithfulness, with the largest decrease reaching a striking 69.7%. To explain these declines, we analyze the hidden states and logit distributions for the tokens representing new knowledge and parametric knowledge respectively, highlighting the limitations of current approaches. Our finding highlights the complex trade-offs inherent in enhancing LLMs. Therefore, we recommend that more research on LLMs' factuality enhancement make efforts to reduce the sacrifice of context-faithfulness. |
|
LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy | 2024-10-04 | ShowThe Key-Value (KV) cache is a crucial component in serving transformer-based autoregressive large language models (LLMs), enabling faster inference by storing previously computed KV vectors. However, its memory consumption scales linearly with sequence length and batch size, posing a significant bottleneck in LLM deployment. Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages, which requires extensive parameter tuning thus unsuitable for pre-trained LLMs; (2) KV cache compression at test time, primarily through token eviction policies, which often overlook inter-layer dependencies and can be task-specific. This paper introduces an orthogonal approach to KV cache compression. We propose a low-rank approximation of KV weight matrices, allowing for plug-in integration with existing transformer-based LLMs without model retraining. To effectively compress KV cache at the weight level, we adjust for layerwise sensitivity and introduce a progressive compression strategy, which is supported by our theoretical analysis on how compression errors accumulate in deep networks. Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages. Extensive experiments with LLaMA models ranging from 8B to 70B parameters across various tasks show that our approach significantly reduces the GPU memory footprint while maintaining performance. |
15 pages, 4 figures |
TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts | 2024-10-04 | ShowProving mathematical theorems using computer-verifiable formal languages like Lean significantly impacts mathematical reasoning. One approach to formal theorem proving involves generating complete proofs using Large Language Models (LLMs) based on Natural Language (NL) proofs. However, due to the scarcity of aligned NL and Formal Language (FL) theorem-proving data most modern LLMs exhibit suboptimal performance.This scarcity results in a paucity of methodologies for training LLMs and techniques to fully utilize their capabilities in composing formal proofs. To address these challenges, this paper proposes TheoremLlama, an end-to-end framework that trains a general-purpose LLM to be a Lean4 expert. TheoremLlama includes NL-FL dataset generation and bootstrapping method to obtain aligned dataset, curriculum learning and block training techniques to train the model, and iterative proof writing method to write Lean4 proofs that work together synergistically. Using the dataset generation method in TheoremLlama, we provide Open Bootstrapped Theorems (OBT), an NL-FL aligned and bootstrapped dataset. Our novel NL-FL bootstrapping method, where NL proofs are integrated into Lean4 code for training datasets, leverages the NL reasoning ability of LLMs for formal reasoning. The TheoremLlama framework achieves cumulative accuracies of 36.48% and 33.61% on MiniF2F-Valid and Test datasets respectively, surpassing the GPT-4 baseline of 22.95% and 25.41%. Our code, model checkpoints, and the generated dataset is published in GitHub |
|
Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs | 2024-10-04 | ShowRecent advances in large language models (LLM) have enabled richer social simulations, allowing for the study of various social phenomena. However, most recent work has used a more omniscient perspective on these simulations (e.g., single LLM to generate all interlocutors), which is fundamentally at odds with the non-omniscient, information asymmetric interactions that involve humans and AI agents in the real world. To examine these differences, we develop an evaluation framework to simulate social interactions with LLMs in various settings (omniscient, non-omniscient). Our experiments show that LLMs perform better in unrealistic, omniscient simulation settings but struggle in ones that more accurately reflect real-world conditions with information asymmetry. Our findings indicate that addressing information asymmetry remains a fundamental challenge for LLM-based agents. |
EMNLP 2024 |
Scheherazade: Evaluating Chain-of-Thought Math Reasoning in LLMs with Chain-of-Problems | 2024-10-04 | ShowBenchmarks are critical for measuring progress of math reasoning abilities of Large Language Models (LLMs). However, existing widely-used benchmarks such as GSM8K have been rendered less useful as multiple cutting-edge LLMs achieve over 94% accuracy. While harder benchmarks have been proposed, their creation is often manual and expensive. We present Scheherazade, an automated approach for producing challenging mathematical reasoning benchmarks by logically chaining mathematical reasoning problems. We propose two different chaining methods, forward chaining and backward chaining, which require reasoning forward and backward through the chain respectively. We apply Scheherazade on GSM8K to create GSM8K-Scheherazade and evaluate 3 frontier LLMs and OpenAI's o1-preview on it. We show that while frontier models' performance declines precipitously at only a few questions chained, a preliminary evaluation suggests o1-preview performance persists up to 5 questions chained backwards. In addition, while all other models perform worse when problems are chained backwards, o1-preview performs better on backward-chained benchmarks. We will release the dataset and code publicly. |
|
Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs | 2024-10-04 | ShowTopic modeling is a powerful technique for uncovering hidden themes within a collection of documents. However, the effectiveness of traditional topic models often relies on sufficient word co-occurrence, which is lacking in short texts. Therefore, existing approaches, whether probabilistic or neural, frequently struggle to extract meaningful patterns from such data, resulting in incoherent topics. To address this challenge, we propose a novel approach that leverages large language models (LLMs) to extend short texts into more detailed sequences before applying topic modeling. To further improve the efficiency and solve the problem of semantic inconsistency from LLM-generated texts, we propose to use prefix tuning to train a smaller language model coupled with a variational autoencoder for short-text topic modeling. Our method significantly improves short-text topic modeling performance, as demonstrated by extensive experiments on real-world datasets with extreme data sparsity, outperforming current state-of-the-art topic models. |
EMNLP...EMNLP Findings 2024. arXiv admin note: substantial text overlap with arXiv:2310.15420 |
DocKD: Knowledge Distillation from LLMs for Open-World Document Understanding Models | 2024-10-04 | ShowVisual document understanding (VDU) is a challenging task that involves understanding documents across various modalities (text and image) and layouts (forms, tables, etc.). This study aims to enhance generalizability of small VDU models by distilling knowledge from LLMs. We identify that directly prompting LLMs often fails to generate informative and useful data. In response, we present a new framework (called DocKD) that enriches the data generation process by integrating external document knowledge. Specifically, we provide an LLM with various document elements like key-value pairs, layouts, and descriptions, to elicit open-ended answers. Our experiments show that DocKD produces high-quality document annotations and surpasses the direct knowledge distillation approach that does not leverage external document knowledge. Moreover, student VDU models trained with solely DocKD-generated data are not only comparable to those trained with human-annotated data on in-domain tasks but also significantly excel them on out-of-domain tasks. |
Accep...Accepted to EMNLP 2024 |
DeFT: Decoding with Flash Tree-attention for Efficient Tree-structured LLM Inference | 2024-10-03 | ShowLarge language models (LLMs) are increasingly employed for complex tasks that process multiple generation calls in a tree structure with shared prefixes of tokens, including few-shot prompting, multi-step reasoning, speculative decoding, etc. However, existing inference systems for tree-based applications are inefficient due to improper partitioning of queries and KV cache during attention calculation. This leads to two main issues: (1) a lack of memory access (IO) reuse for KV cache of shared prefixes, and (2) poor load balancing.As a result, there is redundant KV cache IO between GPU global memory and shared memory, along with low GPU utilization. To address these challenges, we propose DeFT(Decoding with Flash Tree-Attention), a hardware-efficient attention algorithm with prefix-aware and load-balanced KV cache partitions. DeFT reduces the number of read/write operations of KV cache during attention calculation through KV-Guided Grouping, a method that avoids repeatedly loading KV cache of shared prefixes in attention computation. Additionally, we propose Flattened Tree KV Splitting, a mechanism that ensures even distribution of the KV cache across partitions with little computation redundancy, enhancing GPU utilization during attention computations. By reducing 73-99 KV cache IO and nearly 100 IO for partial results during attention calculation, DeFT achieves up to 2.52/3.82x speedup in the end-to-end/attention latency across three practical tree-based workloads compared to state-of-the-art attention algorithms. |
Updat...Update DeFT-v3 with more ablation studies. DeFT-v1 was accepted by ICLR'24 AGI Workshop ( https://openreview.net/forum?id=HqfLHoX8bR ). Code will be released soon |
TrustAgent: Towards Safe and Trustworthy LLM-based Agents | 2024-10-03 | ShowThe rise of LLM-based agents shows great potential to revolutionize task planning, capturing significant attention. Given that these agents will be integrated into high-stake domains, ensuring their reliability and safety is crucial. This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a particular focus on improving the LLM-based agent safety. The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Our experimental results demonstrate that the proposed framework can effectively enhance an LLM agent's safety across multiple domains by identifying and mitigating potential dangers during the planning. Further analysis reveals that the framework not only improves safety but also enhances the helpfulness of the agent. Additionally, we highlight the importance of the LLM reasoning ability in adhering to the Constitution. This paper sheds light on how to ensure the safe integration of LLM-based agents into human-centric environments. Data and code are available at https://github.com/agiresearch/TrustAgent. |
In EMNLP 2024 |
Is Your Paper Being Reviewed by an LLM? Investigating AI Text Detectability in Peer Review | 2024-10-03 | ShowPeer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in the linguistic capabilities of large language models (LLMs), a new potential risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. In this study, we investigate the ability of existing AI text detection algorithms to distinguish between peer reviews written by humans and different state-of-the-art LLMs. Our analysis shows that existing approaches fail to identify many GPT-4o written reviews without also producing a high number of false positive classifications. To address this deficiency, we propose a new detection approach which surpasses existing methods in the identification of GPT-4o written peer reviews at low levels of false positive classifications. Our work reveals the difficulty of accurately identifying AI-generated text at the individual review level, highlighting the urgent need for new tools and methods to detect this type of unethical application of generative AI. |
|
LLMs learn governing principles of dynamical systems, revealing an in-context neural scaling law | 2024-10-03 | ShowPretrained large language models (LLMs) are surprisingly effective at performing zero-shot tasks, including time-series forecasting. However, understanding the mechanisms behind such capabilities remains highly challenging due to the complexity of the models. We study LLMs' ability to extrapolate the behavior of dynamical systems whose evolution is governed by principles of physical interest. Our results show that LLaMA 2, a language model trained primarily on texts, achieves accurate predictions of dynamical system time series without fine-tuning or prompt engineering. Moreover, the accuracy of the learned physical rules increases with the length of the input context window, revealing an in-context version of neural scaling law. Along the way, we present a flexible and efficient algorithm for extracting probability density functions of multi-digit numbers directly from LLMs. |
|
MUSCLE: A Model Update Strategy for Compatible LLM Evolution | 2024-10-03 | ShowLarge Language Models (LLMs) are regularly updated to enhance performance, typically through changes in data or architecture. Within the update process, developers often prioritize improving overall performance metrics, paying less attention to maintaining compatibility with earlier model versions. Instance-level degradation (instance regression) of performance from one model version to the next can interfere with a user's mental model of the capabilities of a particular language model. Users having to adapt their mental model with every update can lead to dissatisfaction, especially when the new model has degraded compared to a prior version for a known use case (model update regression). We find that when pretrained LLM base models are updated, fine-tuned user-facing downstream task adapters experience negative flips -- previously correct instances are now predicted incorrectly. We observe model update regression between different model versions on a diverse set of tasks and models, even when the downstream task training procedures remain identical. We argue for the importance of maintaining model update compatibility during updates, and present evaluation metrics designed specifically for generative tasks, while also being applicable to discriminative tasks. We propose a training strategy to minimize the extent of instance regression in model updates, involving training of a compatibility adapter that can enhance task fine-tuned language models. We show negative flips reduce by up to 40% e.g. when updating Llama 1 to Llama 2 with our proposed method. |
|
Cognitive Bias in Decision-Making with LLMs | 2024-10-03 | ShowLarge language models (LLMs) offer significant potential as tools to support an expanding range of decision-making tasks. Given their training on human (created) data, LLMs have been shown to inherit societal biases against protected groups, as well as be subject to bias functionally resembling cognitive bias. Human-like bias can impede fair and explainable decisions made with LLM assistance. Our work introduces BiasBuster, a framework designed to uncover, evaluate, and mitigate cognitive bias in LLMs, particularly in high-stakes decision-making tasks. Inspired by prior research in psychology and cognitive science, we develop a dataset containing 13,465 prompts to evaluate LLM decisions on different cognitive biases (e.g., prompt-induced, sequential, inherent). We test various bias mitigation strategies, while proposing a novel method utilizing LLMs to debias their own human-like cognitive bias within prompts. Our analysis provides a comprehensive picture of the presence and effects of cognitive bias across commercial and open-source models. We demonstrate that our selfhelp debiasing effectively mitigates model answers that display patterns akin to human cognitive bias without having to manually craft examples for each bias. |
|
Hierarchical Deconstruction of LLM Reasoning: A Graph-Based Framework for Analyzing Knowledge Utilization | 2024-10-03 | ShowDespite the advances in large language models (LLMs), how they use their knowledge for reasoning is not yet well understood. In this study, we propose a method that deconstructs complex real-world questions into a graph, representing each question as a node with predecessors of background knowledge needed to solve the question. We develop the DepthQA dataset, deconstructing questions into three depths: (i) recalling conceptual knowledge, (ii) applying procedural knowledge, and (iii) analyzing strategic knowledge. Based on a hierarchical graph, we quantify forward discrepancy, a discrepancy in LLM performance on simpler sub-problems versus complex questions. We also measure backward discrepancy where LLMs answer complex questions but struggle with simpler ones. Our analysis shows that smaller models exhibit more discrepancies than larger models. Distinct patterns of discrepancies are observed across model capacity and possibility of training data memorization. Additionally, guiding models from simpler to complex questions through multi-turn interactions improves performance across model sizes, highlighting the importance of structured intermediate steps in knowledge reasoning. This work enhances our understanding of LLM reasoning and suggests ways to improve their problem-solving abilities. |
publi...published at EMNLP 2024; code is available at https://github.com/kaistAI/knowledge-reasoning |
EPO: Hierarchical LLM Agents with Environment Preference Optimization | 2024-10-03 | ShowLong-horizon decision-making tasks present significant challenges for LLM-based agents due to the need for extensive planning over multiple steps. In this paper, we propose a hierarchical framework that decomposes complex tasks into manageable subgoals, utilizing separate LLMs for subgoal prediction and low-level action generation. To address the challenge of creating training signals for unannotated datasets, we develop a reward model that leverages multimodal environment feedback to automatically generate reward signals. We introduce Environment Preference Optimization (EPO), a novel method that generates preference signals from the environment's feedback and uses them to train LLM-based agents. Extensive experiments on ALFRED demonstrate the state-of-the-art performance of our framework, achieving first place on the ALFRED public leaderboard and showcasing its potential to improve long-horizon decision-making in diverse environments. |
EMNLP 2024 |
Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain | 2024-10-03 | ShowQuestions are essential tools for acquiring the necessary information to complete information-seeking tasks. However, large language models (LLMs), especially open-source models, often perform poorly in generating informative questions, as measured by expected information gain (EIG). In this paper, we propose a method to enhance the informativeness of LLM-generated questions in 20-question game dialogues. We sample multiple questions from the same model (LLAMA 2-CHAT 7B) for each game and create pairs of low-EIG and high-EIG questions to apply a Direct Preference Optimization (DPO) algorithm. Our results show that this method produces more effective questions (in terms of EIG), even in domains different from those used to train the DPO model. |
|
Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text | 2024-10-03 | ShowSolving Partial Differential Equations (PDEs) is ubiquitous in science and engineering. Computational complexity and difficulty in writing numerical solvers has motivated the development of machine learning techniques to generate solutions quickly. Many existing methods are purely data driven, relying solely on numerical solution fields, rather than known system information such as boundary conditions and governing equations. However, the recent rise in popularity of Large Language Models (LLMs) has enabled easy integration of text in multimodal machine learning models. In this work, we use pretrained LLMs to integrate various amounts known system information into PDE learning. Our multimodal approach significantly outperforms our baseline model, FactFormer, in both next-step prediction and autoregressive rollout performance on the 2D Heat, Burgers, Navier-Stokes, and Shallow Water equations. Further analysis shows that pretrained LLMs provide highly structured latent space that is consistent with the amount of system information provided through text. |
22 pa...22 pages, 15 figures, 7 tables |
Coal Mining Question Answering with LLMs | 2024-10-03 | ShowIn this paper, we present a novel approach to coal mining question answering (QA) using large language models (LLMs) combined with tailored prompt engineering techniques. Coal mining is a complex, high-risk industry where accurate, context-aware information is critical for safe and efficient operations. Current QA systems struggle to handle the technical and dynamic nature of mining-related queries. To address these challenges, we propose a multi-turn prompt engineering framework designed to guide LLMs, such as GPT-4, in answering coal mining questions with higher precision and relevance. By breaking down complex queries into structured components, our approach allows LLMs to process nuanced technical information more effectively. We manually curated a dataset of 500 questions from real-world mining scenarios and evaluated the system's performance using both accuracy (ACC) and GPT-4-based scoring metrics. Experiments comparing ChatGPT, Claude2, and GPT-4 across baseline, chain-of-thought (CoT), and multi-turn prompting methods demonstrate that our method significantly improves both accuracy and contextual relevance, with an average accuracy improvement of 15-18% and a notable increase in GPT-4 scores. The results show that our prompt-engineering approach provides a robust, adaptable solution for domain-specific question answering in high-stakes environments like coal mining. |
|
AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML | 2024-10-03 | ShowAutomated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains. |
47 pages, 5 figures |
Visual Editing with LLM-based Tool Chaining: An Efficient Distillation Approach for Real-Time Applications | 2024-10-03 | ShowWe present a practical distillation approach to fine-tune LLMs for invoking tools in real-time applications. We focus on visual editing tasks; specifically, we modify images and videos by interpreting user stylistic requests, specified in natural language ("golden hour"), using an LLM to select the appropriate tools and their parameters to achieve the desired visual effect. We found that proprietary LLMs such as GPT-3.5-Turbo show potential in this task, but their high cost and latency make them unsuitable for real-time applications. In our approach, we fine-tune a (smaller) student LLM with guidance from a (larger) teacher LLM and behavioral signals. We introduce offline metrics to evaluate student LLMs. Both online and offline experiments show that our student models manage to match the performance of our teacher model (GPT-3.5-Turbo), significantly reducing costs and latency. Lastly, we show that fine-tuning was improved by 25% in low-data regimes using augmentation. |
EMNLP 2024 |
LLMCO2: Advancing Accurate Carbon Footprint Prediction for LLM Inferences | 2024-10-03 | ShowThroughout its lifecycle, a large language model (LLM) generates a substantially larger carbon footprint during inference than training. LLM inference requests vary in batch size, prompt length, and token generation number, while cloud providers employ different GPU types and quantities to meet diverse service-level objectives for accuracy and latency. It is crucial for both users and cloud providers to have a tool that quickly and accurately estimates the carbon impact of LLM inferences based on a combination of inference request and hardware configurations before execution. Estimating the carbon footprint of LLM inferences is more complex than training due to lower and highly variable model FLOPS utilization, rendering previous equation-based models inaccurate. Additionally, existing machine learning (ML) prediction methods either lack accuracy or demand extensive training data, as they inadequately handle the distinct prefill and decode phases, overlook hardware-specific features, and inefficiently sample uncommon inference configurations. We introduce \coo, a graph neural network (GNN)-based model that greatly improves the accuracy of LLM inference carbon footprint predictions compared to previous methods. |
9 pages, 11 figures |
Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice | 2024-10-03 | ShowLarge Language Models (LLMs) boosts human efficiency but also poses misuse risks, with watermarking serving as a reliable method to differentiate AI-generated content from human-created text. In this work, we propose a novel theoretical framework for watermarking LLMs. Particularly, we jointly optimize both the watermarking scheme and detector to maximize detection performance, while controlling the worst-case Type-I error and distortion in the watermarked text. Within our framework, we characterize the universally minimum Type-II error, showing a fundamental trade-off between detection performance and distortion. More importantly, we identify the optimal type of detectors and watermarking schemes. Building upon our theoretical analysis, we introduce a practical, model-agnostic and computationally efficient token-level watermarking algorithm that invokes a surrogate model and the Gumbel-max trick. Empirical results on Llama-13B and Mistral-8$\times$7B demonstrate the effectiveness of our method. Furthermore, we also explore how robustness can be integrated into our theoretical framework, which provides a foundation for designing future watermarking systems with improved resilience to adversarial attacks. |
|
Position: LLM Unlearning Benchmarks are Weak Measures of Progress | 2024-10-03 | ShowUnlearning methods have the potential to improve the privacy and safety of large language models (LLMs) by removing sensitive or harmful information post hoc. The LLM unlearning research community has increasingly turned toward empirical benchmarks to assess the effectiveness of such methods. In this paper, we find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods. By introducing simple, benign modifications to a number of popular benchmarks, we expose instances where supposedly unlearned information remains accessible, or where the unlearning process has degraded the model's performance on retained information to a much greater extent than indicated by the original benchmark. We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information. Further, we show that ambiguity in unlearning targets in existing benchmarks can easily lead to the design of methods that overfit to the given test queries. Based on our findings, we urge the community to be cautious when interpreting benchmark results as reliable measures of progress, and we provide several recommendations to guide future LLM unlearning research. |
|
Preble: Efficient Distributed Prompt Scheduling for LLM Serving | 2024-10-03 | ShowPrompts to large language models (LLMs) have evolved beyond simple user questions. For LLMs to solve complex problems, today's practices are to include domain-specific instructions, illustration of tool usages, and/or long context such as textbook chapters in prompts. As such, many parts of prompts are repetitive across requests. Recent works propose to cache and reuse KV state of prompts. However, they are all confined to a single-GPU optimization, while production LLM serving systems are distributed by nature. This paper proposes Preble, the first distributed LLM serving platform that targets and optimizes for prompt sharing. We designed a distributed scheduling system that co-optimizes KV state reuse and computation load-balancing with a new scheduling algorithm and a hierarchical scheduling mechanism. Our evaluation of Preble with real workloads and request arrival patterns on two open-source LLMs shows that Preble outperforms the SOTA serving systems by 1.5X to 14.5X on average latency and 2X to 10X on p99 latency. |
|
Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even Mid-Generation | 2024-10-03 | ShowInference-time computation is a powerful paradigm to enhance the performance of large language models (LLMs), with Best-of-N sampling being a widely used technique. However, this method is computationally expensive, requiring both (1) an external reward model and (2) the generation of multiple samples. In this work, we introduce a new generative self-evaluation scheme designed to adaptively reduce the number of generated samples while maintaining or even improving performance. We use a generative reward model formulation, allowing the LLM to predict mid-generation the probability that restarting the generation will yield a better response. These predictions are obtained without an external reward model and can be used to decide whether or not to generate more samples, prune unpromising samples early on, or to pick the best sample. This capability is very inexpensive as it involves generating a single predefined token. Trained using a dataset constructed with real unfiltered LMSYS user prompts, Llama 3.1 8B's win rate against GPT-4 on AlpacaEval increases from 21% to 34% with 16 samples and math performance on GSM8K improves from 84% to 91%. By sampling only when the LLM determines that it is beneficial to do so and adaptively adjusting temperature annealing, we demonstrate that 74% of the improvement from using 16 samples can be achieved with only 1.2 samples on average. We further demonstrate that 50-75% of samples can be pruned early in generation with minimal degradation in performance. Overall, our methods enable more efficient and scalable compute utilization during inference for LLMs. |
|
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations | 2024-10-03 | ShowLarge language models (LLMs) often produce errors, including factual inaccuracies, biases, and reasoning failures, collectively referred to as "hallucinations". Recent studies have demonstrated that LLMs' internal states encode information regarding the truthfulness of their outputs, and that this information can be utilized to detect errors. In this work, we show that the internal representations of LLMs encode much more information about truthfulness than previously recognized. We first discover that the truthfulness information is concentrated in specific tokens, and leveraging this property significantly enhances error detection performance. Yet, we show that such error detectors fail to generalize across datasets, implying that -- contrary to prior claims -- truthfulness encoding is not universal but rather multifaceted. Next, we show that internal representations can also be used for predicting the types of errors the model is likely to make, facilitating the development of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs' internal encoding and external behavior: they may encode the correct answer, yet consistently generate an incorrect one. Taken together, these insights deepen our understanding of LLM errors from the model's internal perspective, which can guide future research on enhancing error analysis and mitigation. |
|
Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? | 2024-10-03 | ShowThe vast majority of today's large language models (LLMs) are English-centric, having been pretrained predominantly on English text. Yet, in order to meet user expectations, models need to be able to respond appropriately in multiple languages once deployed in downstream applications. This requires strong cross-lingual transfer abilities. In this work, we investigate the minimal amount of multilinguality required during finetuning to elicit cross-lingual generalisation in English-centric LLMs. In experiments across four LLMs, we find that multilingual instruction tuning with as few as two to three languages is both necessary and sufficient to elicit effective cross-lingual generalisation, with the limiting factor being the degree to which a target language is seen during pretraining. Evaluations on five different tasks further reveal that multilingual instruction tuning is most beneficial for generative tasks that assume input/output language agreement, such as in chat settings, while being of less importance for highly structured classification-style tasks. Our code and data is available at https://github.com/ZurichNLP/multilingual-instruction-tuning. |
Accep...Accepted at Findings of EMNLP 2024 |
Jailbreaking LLMs with Arabic Transliteration and Arabizi | 2024-10-03 | ShowThis study identifies the potential vulnerabilities of Large Language Models (LLMs) to 'jailbreak' attacks, specifically focusing on the Arabic language and its various forms. While most research has concentrated on English-based prompt manipulation, our investigation broadens the scope to investigate the Arabic language. We initially tested the AdvBench benchmark in Standardized Arabic, finding that even with prompt manipulation techniques like prefix injection, it was insufficient to provoke LLMs into generating unsafe content. However, when using Arabic transliteration and chatspeak (or arabizi), we found that unsafe content could be produced on platforms like OpenAI GPT-4 and Anthropic Claude 3 Sonnet. Our findings suggest that using Arabic and its various forms could expose information that might remain hidden, potentially increasing the risk of jailbreak attacks. We hypothesize that this exposure could be due to the model's learned connection to specific words, highlighting the need for more comprehensive safety training across all language forms. |
Accep...Accepted by EMNLP 2024 |
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life | 2024-10-03 | ShowAs we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts. |
Prepr...Preprint. Under Review |
CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs | 2024-10-03 | ShowTo make large language models (LLMs) more helpful across diverse cultures, it is essential to have effective cultural knowledge benchmarks to measure and track our progress. Effective benchmarks need to be robust, diverse, and challenging. We introduce CulturalBench: a set of 1,227 human-written and human-verified questions for effectively assessing LLMs' cultural knowledge, covering 45 global regions including the underrepresented ones like Bangladesh, Zimbabwe, and Peru. Questions - each verified by five independent annotators - span 17 diverse topics ranging from food preferences to greeting etiquettes. We evaluate models on two setups: CulturalBench-Easy and CulturalBench-Hard which share the same questions but asked differently. We find that LLMs are sensitive to such difference in setups (e.g., GPT-4o with 27.3% difference). Compared to human performance (92.6% accuracy), CulturalBench-Hard is more challenging for frontier LLMs with the best performing model (GPT-4o) at only 61.5% and the worst (Llama3-8b) at 21.4%. Moreover, we find that LLMs often struggle with tricky questions that have multiple correct answers (e.g., What utensils do the Chinese usually use?), revealing a tendency to converge to a single answer. Our results also indicate that OpenAI GPT-4o substantially outperform other proprietary and open source models in questions related to all but one region (Oceania). Nonetheless, all models consistently underperform on questions related to South America and the Middle East. |
Prepr...Preprint. Under review |
Does Refusal Training in LLMs Generalize to the Past Tense? | 2024-10-03 | ShowRefusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense. |
Updat...Update in v3: o1-mini and o1-preview results (on top of GPT-4o and Claude 3.5 Sonnet added in v2). We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense |
Hate Personified: Investigating the role of LLMs in content moderation | 2024-10-03 | ShowFor subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear. By including additional context in prompts, we comprehensively analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected. Our findings on two LLMs, five languages, and six datasets reveal that mimicking persona-based attributes leads to annotation variability. Meanwhile, incorporating geographical signals leads to better regional alignment. We also find that the LLMs are sensitive to numerical anchors, indicating the ability to leverage community-based flagging efforts and exposure to adversaries. Our work provides preliminary guidelines and highlights the nuances of applying LLMs in culturally sensitive cases. |
17 pa...17 pages, 6 Figures, 13 Tables, EMNLP'24 Mains |
Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents | 2024-10-03 | ShowAlthough LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB. |
|
PARAMANU-AYN: Pretrain from scratch or Continual Pretraining of LLMs for Legal Domain Adaptation? | 2024-10-03 | ShowIn this paper, we present Paramanu-Ayn, a collection of legal language models trained exclusively on Indian legal case documents. This 97-million-parameter Auto-Regressive (AR) decoder-only model was pretrained from scratch with a context size of 8192 on a single GPU for just 185 hours, achieving an efficient MFU of 41.35. We also developed a legal domain specialized BPE tokenizer. We evaluated our model using perplexity and zero-shot tasks: case judgment prediction with explanation and abstractive case summarization. Paramanu-Ayn outperformed Llama-2 7B and Gemini-Pro in case judgment prediction with explanation task on test accuracy by nearly 2 percentage points, despite being 72 times smaller. In zero-shot abstractive summarization, it surpassed decoder-only LLMs generating fixed-length summaries (5000 tokens) by over 10 percentage points in BLEU and METEOR metrics, and by nearly 4 percentage points in BERTScore. Further evaluations on zero-shot commonsense and mathematical benchmarks showed that Paramanu-Ayn excelled despite being trained exclusively on legal documents, outperforming Llama-1, Llama-2, and Falcon on AGIEVAL-AQuA-RAT and AGIEVAL-SAT-Math tasks. We also instruction-tuned our model on 10,763 diverse legal tasks, including legal clause generation, legal drafting, case summarization, etc. The Paramanu-Ayn-instruct model scored above 8 out of 10 in clarity, relevance, completeness, and legal reasoning metrics by GPT-3.5-Turbo. We found that our models, were able to learn drafting knowledge and generalize to draft legal contracts and legal clauses with limited instruction-tuning. Hence, we conclude that for a strong domain-specialized generative language model (such as legal), domain specialized pretraining from scratch is more cost effective, environmentally friendly, and remains competitive with larger models or even better than adapting LLMs for legal domain tasks. |
|
Fast Matrix Multiplications for Lookup Table-Quantized LLMs | 2024-10-03 | ShowThe deployment of large language models (LLMs) is often constrained by memory bandwidth, where the primary bottleneck is the cost of transferring model parameters from the GPU's global memory to its registers. When coupled with custom kernels that fuse the dequantization and matmul operations, weight-only quantization can thus enable faster inference by reducing the amount of memory movement. However, developing high-performance kernels for weight-quantized LLMs presents substantial challenges, especially when the weights are compressed to non-evenly-divisible bit widths (e.g., 3 bits) with non-uniform, lookup table (LUT) quantization. This paper describes FLUTE, a flexible lookup table engine for LUT-quantized LLMs, which uses offline restructuring of the quantized weight matrix to minimize bit manipulations associated with unpacking, and vectorization and duplication of the lookup table to mitigate shared memory bandwidth constraints. At batch sizes < 32 and quantization group size of 128 (typical in LLM inference), the FLUTE kernel can be 2-4x faster than existing GEMM kernels. As an application of FLUTE, we explore a simple extension to lookup table-based NormalFloat quantization and apply it to quantize LLaMA3 to various configurations, obtaining competitive quantization performance against strong baselines while obtaining an end-to-end throughput increase of 1.5 to 2 times. |
EMNLP...EMNLP 2024 (Findings) |
Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering | 2024-10-03 | ShowTo address the issues of insufficient knowledge and hallucination in Large Language Models (LLMs), numerous studies have explored integrating LLMs with Knowledge Graphs (KGs). However, these methods are typically evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where all factual triples required for each question are entirely covered by the given KG. In such cases, LLMs primarily act as an agent to find answer entities within the KG, rather than effectively integrating the internal knowledge of LLMs and external knowledge sources such as KGs. In fact, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate these real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the provided KG lacks some of the factual triples for each question, and construct corresponding datasets. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG), which can generate new factual triples while exploring KGs. Specifically, GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA. Experimental results on two datasets demonstrate that our GoG outperforms all previous methods. |
Accep...Accepted by EMNLP 2024 Main |
Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions | 2024-10-03 | ShowAs Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-generated data. Given that LLMs are being used to gain insights into various societal aspects, it is essential to mitigate these biases. To that end, our study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases. We begin by creating a dataset of scenarios where implicit gender biases might arise, and subsequently develop a metric to assess the presence of biases. Our empirical analysis reveals that LLMs generate outputs characterized by strong implicit bias associations (>= 50% of the time). Furthermore, these biases tend to escalate following multi-agent interactions. To mitigate them, we propose two strategies: self-reflection with in-context examples (ICE); and supervised fine-tuning. Our research demonstrates that both methods effectively mitigate implicit biases, with the ensemble of fine-tuning and self-reflection proving to be the most successful. |
Accep...Accepted to EMNLP Findings 2024 |
Multi-FAct: Assessing Factuality of Multilingual LLMs using FActScore | 2024-10-03 | ShowEvaluating the factuality of long-form large language model (LLM)-generated text is an important challenge. Recently there has been a surge of interest in factuality evaluation for English, but little is known about the factuality evaluation of multilingual LLMs, specially when it comes to long-form generation. %This paper systematically evaluates multilingual LLMs' factual accuracy across languages and geographic regions. We introduce a simple pipeline for multilingual factuality evaluation, by applying FActScore (Min et al., 2023) for diverse languages. In addition to evaluating multilingual factual generation, we evaluate the factual accuracy of long-form text generation in topics that reflect regional diversity. We also examine the feasibility of running the FActScore pipeline using non-English Wikipedia and provide comprehensive guidelines on multilingual factual evaluation for regionally diverse topics. |
|
BadRobot: Manipulating Embodied LLMs in the Physical World | 2024-10-03 | ShowEmbodied AI represents systems where AI is integrated into physical entities, enabling them to perceive and interact with their surroundings. Large Language Model (LLM), which exhibits powerful language understanding abilities, has been extensively employed in embodied AI by facilitating sophisticated task planning. However, a critical safety issue remains overlooked: could these embodied LLMs perpetrate harmful behaviors? In response, we introduce BadRobot, a novel attack paradigm aiming to make embodied LLMs violate safety and ethical constraints through typical voice-based user-system interactions. Specifically, three vulnerabilities are exploited to achieve this type of attack: (i) manipulation of LLMs within robotic systems, (ii) misalignment between linguistic outputs and physical actions, and (iii) unintentional hazardous behaviors caused by world knowledge's flaws. Furthermore, we construct a benchmark of various malicious physical action queries to evaluate BadRobot's attack performance. Based on this benchmark, extensive experiments against existing prominent embodied LLM frameworks (e.g., Voxposer, Code as Policies, and ProgPrompt) demonstrate the effectiveness of our BadRobot. Warning: This paper contains harmful AI-generated language and aggressive actions. |
38 pages, 16 figures |
Choices are More Important than Efforts: LLM Enables Efficient Multi-Agent Exploration | 2024-10-03 | ShowWith expansive state-action spaces, efficient multi-agent exploration remains a longstanding challenge in reinforcement learning. Although pursuing novelty, diversity, or uncertainty attracts increasing attention, redundant efforts brought by exploration without proper guidance choices poses a practical issue for the community. This paper introduces a systematic approach, termed LEMAE, choosing to channel informative task-relevant guidance from a knowledgeable Large Language Model (LLM) for Efficient Multi-Agent Exploration. Specifically, we ground linguistic knowledge from LLM into symbolic key states, that are critical for task fulfillment, in a discriminative manner at low LLM inference costs. To unleash the power of key states, we design Subspace-based Hindsight Intrinsic Reward (SHIR) to guide agents toward key states by increasing reward density. Additionally, we build the Key State Memory Tree (KSMT) to track transitions between key states in a specific task for organized exploration. Benefiting from diminishing redundant explorations, LEMAE outperforms existing SOTA approaches on the challenging benchmarks (e.g., SMAC and MPE) by a large margin, achieving a 10x acceleration in certain scenarios. |
|
Cut the Crap: An Economical Communication Pipeline for LLM-based Multi-Agent Systems | 2024-10-03 | ShowRecent advancements in large language model (LLM)-powered agents have shown that collective intelligence can significantly outperform individual capabilities, largely attributed to the meticulously designed inter-agent communication topologies. Though impressive in performance, existing multi-agent pipelines inherently introduce substantial token overhead, as well as increased economic costs, which pose challenges for their large-scale deployments. In response to this challenge, we propose an economical, simple, and robust multi-agent communication framework, termed |
|
DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM | 2024-10-03 | ShowVisual language tracking (VLT) has emerged as a cutting-edge research area, harnessing linguistic data to enhance algorithms with multi-modal inputs and broadening the scope of traditional single object tracking (SOT) to encompass video understanding applications. Despite this, most VLT benchmarks still depend on succinct, human-annotated text descriptions for each video. These descriptions often fall short in capturing the nuances of video content dynamics and lack stylistic variety in language, constrained by their uniform level of detail and a fixed annotation frequency. As a result, algorithms tend to default to a "memorize the answer" strategy, diverging from the core objective of achieving a deeper understanding of video content. Fortunately, the emergence of large language models (LLMs) has enabled the generation of diverse text. This work utilizes LLMs to generate varied semantic annotations (in terms of text lengths and granularities) for representative SOT benchmarks, thereby establishing a novel multi-modal benchmark. Specifically, we (1) propose a new visual language tracking benchmark with diverse texts, named DTVLT, based on five prominent VLT and SOT benchmarks, including three sub-tasks: short-term tracking, long-term tracking, and global instance tracking. (2) We offer four granularity texts in our benchmark, considering the extent and density of semantic information. We expect this multi-granular generation strategy to foster a favorable environment for VLT and video understanding research. (3) We conduct comprehensive experimental analyses on DTVLT, evaluating the impact of diverse text on tracking performance and hope the identified performance bottlenecks of existing algorithms can support further research in VLT and video understanding. The proposed benchmark, experimental results and toolkit will be released gradually on http://videocube.aitestunion.com/. |
Prepr...Preprint, Under Review |
Encryption-Friendly LLM Architecture | 2024-10-03 | ShowLarge language models (LLMs) offer personalized responses based on user interactions, but this use case raises serious privacy concerns. Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states and provides a potential solution for privacy-preserving machine learning (PPML). However, the computational intensity of transformers poses challenges for applying HE to LLMs. In this work, we propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant computational speedups -- 6.94x for fine-tuning and 2.3x for inference -- while maintaining performance comparable to plaintext models. Our findings provide a viable proof of concept for offering privacy-preserving LLM services in areas where data protection is crucial. |
27 pages |
Meta-Models: An Architecture for Decoding LLM Behaviors Through Interpreted Embeddings and Natural Language | 2024-10-03 | ShowAs Large Language Models (LLMs) become increasingly integrated into our daily lives, the potential harms from deceptive behavior underlie the need for faithfully interpreting their decision-making. While traditional probing methods have shown some effectiveness, they remain best for narrowly scoped tasks while more comprehensive explanations are still necessary. To this end, we investigate meta-models-an architecture using a "meta-model" that takes activations from an "input-model" and answers natural language questions about the input-model's behaviors. We evaluate the meta-model's ability to generalize by training them on selected task types and assessing their out-of-distribution performance in deceptive scenarios. Our findings show that meta-models generalize well to out-of-distribution tasks and point towards opportunities for future research in this area. |
11 pages, 2 figures |
RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance | 2024-10-03 | ShowLarge Language Models (LLMs) have shown incredible potential in code generation tasks, and recent research in prompt engineering have enhanced LLMs' understanding of textual information. However, ensuring the accuracy of generated code often requires extensive testing and validation by programmers. While LLMs can typically generate code based on task descriptions, their accuracy remains limited, especially for complex tasks that require a deeper understanding of both the problem statement and the code generation process. This limitation is primarily due to the LLMs' need to simultaneously comprehend text and generate syntactically and semantically correct code, without having the capability to automatically refine the code. In real-world software development, programmers rarely produce flawless code in a single attempt based on the task description alone, they rely on iterative feedback and debugging to refine their programs. Inspired by this process, we introduce a novel architecture of LLM-based agents for code generation and automatic debugging: Refinement and Guidance Debugging (RGD). The RGD framework is a multi-LLM-based agent debugger that leverages three distinct LLM agents-Guide Agent, Debug Agent, and Feedback Agent. RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback. Experimental results demonstrate that RGD exhibits remarkable code generation capabilities, achieving state-of-the-art performance with a 9.8% improvement on the HumanEval dataset and a 16.2% improvement on the MBPP dataset compared to the state-of-the-art approaches and traditional direct prompting approaches. We highlight the effectiveness of the RGD framework in enhancing LLMs' ability to generate and refine code autonomously. |
|
LLM-Pilot: Characterize and Optimize Performance of your LLM Inference Services | 2024-10-03 | ShowAs Large Language Models (LLMs) are rapidly growing in popularity, LLM inference services must be able to serve requests from thousands of users while satisfying performance requirements. The performance of an LLM inference service is largely determined by the hardware onto which it is deployed, but understanding of which hardware will deliver on performance requirements remains challenging. In this work we present LLM-Pilot - a first-of-its-kind system for characterizing and predicting performance of LLM inference services. LLM-Pilot performs benchmarking of LLM inference services, under a realistic workload, across a variety of GPUs, and optimizes the service configuration for each considered GPU to maximize performance. Finally, using this characterization data, LLM-Pilot learns a predictive model, which can be used to recommend the most cost-effective hardware for a previously unseen LLM. Compared to existing methods, LLM-Pilot can deliver on performance requirements 33% more frequently, whilst reducing costs by 60% on average. |
Accep...Accepted to the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '24) |
ELLMA-T: an Embodied LLM-agent for Supporting English Language Learning in Social VR | 2024-10-03 | ShowMany people struggle with learning a new language, with traditional tools falling short in providing contextualized learning tailored to each learner's needs. The recent development of large language models (LLMs) and embodied conversational agents (ECAs) in social virtual reality (VR) provide new opportunities to practice language learning in a contextualized and naturalistic way that takes into account the learner's language level and needs. To explore this opportunity, we developed ELLMA-T, an ECA that leverages an LLM (GPT-4) and situated learning framework for supporting learning English language in social VR (VRChat). Drawing on qualitative interviews (N=12), we reveal the potential of ELLMA-T to generate realistic, believable and context-specific role plays for agent-learner interaction in VR, and LLM's capability to provide initial language assessment and continuous feedback to learners. We provide five design implications for the future development of LLM-based language agents in social VR. |
20 pages, 6 figures |
PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach | 2024-10-03 | ShowIn recent years, Large Language Models (LLMs) have gained widespread use, raising concerns about their security. Traditional jailbreak attacks, which often rely on the model internal information or have limitations when exploring the unsafe behavior of the victim model, limiting their reducing their general applicability. In this paper, we introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze. We think that each LLM has its unique "security maze", and attackers attempt to find the exit learning from the received feedback and their accumulated experience to compromise the target LLM's security defences. Our approach leverages multi-agent reinforcement learning, where smaller models collaborate to guide the main LLM in performing mutation operations to achieve the attack objectives. By progressively modifying inputs based on the model's feedback, our system induces richer, harmful responses. During our manual attempts to perform jailbreak attacks, we found that the vocabulary of the response of the target model gradually became richer and eventually produced harmful responses. Based on the observation, we also introduce a reward mechanism that exploits the expansion of vocabulary richness in LLM responses to weaken security constraints. Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs, achieving high attack success rates, especially in strongly aligned commercial models like GPT-4o-mini, Claude-3.5, and GLM-4-air with strong safety alignment. This study aims to improve the understanding of LLM security vulnerabilities and we hope that this sturdy can contribute to the development of more robust defenses. |
updat...update the abstract and cite a new related work |
Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA | 2024-10-03 | ShowLong-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows. Meanwhile, benchmarks for evaluating long-context LLMs are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong's test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model's long-context modeling capabilities. |
EMNLP...EMNLP 2024 Main. We release our code and data publicly at https://github.com/MozerWang/Loong |
ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback | 2024-10-03 | ShowRecently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance. |
|
CataractBot: An LLM-Powered Expert-in-the-Loop Chatbot for Cataract Patients | 2024-10-03 | ShowThe healthcare landscape is evolving, with patients seeking reliable information about their health conditions and available treatment options. Despite the abundance of information sources, the digital age overwhelms individuals with excess, often inaccurate information. Patients primarily trust medical professionals, highlighting the need for expert-endorsed health information. However, increased patient loads on experts has led to reduced communication time, impacting information sharing. To address this gap, we develop CataractBot, an experts-in-the-loop chatbot powered by LLMs, in collaboration with an eye hospital in India. CataractBot answers cataract surgery related questions instantly by querying a curated knowledge base, and provides expert-verified responses asynchronously. It has multimodal and multilingual capabilities. In an in-the-wild deployment study with 55 participants, CataractBot proved valuable, providing anytime accessibility, saving time, accommodating diverse literacy levels, alleviating power differences, and adding a privacy layer between patients and doctors. Users reported that their trust in the system was established through expert verification. Broadly, our results could inform future work on designing expert-mediated LLM bots. |
|
Practicing Stress Relief for the Everyday: Designing Social Simulation Using VR, AR, and LLMs | 2024-10-03 | ShowStress is an inevitable part of day-to-day life yet many find themselves unable to manage it themselves, particularly when professional or peer support are not always readily available. As self-care becomes increasingly vital for mental well-being, this paper explores the potential of social simulation as a safe, virtual environment for practicing stress relief for everyday situations. Leveraging the immersive capabilities of VR, AR, and LLMs, we developed eight interactive prototypes for various everyday stressful scenarios (e.g. public speaking) then conducted prototype-driven semi-structured interviews with 19 participants. We reveal that people currently lack effective means to support themselves through everyday stress and found that social simulation fills a gap for simulating real environments for training mental health practices. We outline key considerations for future development of simulation for self-care, including risks of trauma from hyper-realism, distrust of LLM-recommended timing for mental health recommendations, and the value of accessibility for self-care interventions. |
|
Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning | 2024-10-03 | ShowReinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel online algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art online RLHF algorithms. |
|
Efficiently Deploying LLMs with Controlled Risk | 2024-10-03 | ShowDeploying large language models in production requires simultaneous attention to efficiency and risk control. Prior work has shown the possibility to cut costs while maintaining similar accuracy, but has neglected to focus on risk control. By contrast, here we present hierarchical chains with multi-level abstention (HCMA), which use model-intrinsic uncertainty to delegate queries along the LLM intelligence hierarchy, enabling training-free model switching based solely on black-box API calls. Our framework presents novel trade-offs between efficiency and risk. For example, deploying HCMA on MMLU cuts the error rate of Llama3 405B by 30% when the model is allowed to abstain on 20% of the queries. To calibrate HCMA for optimal performance, our approach uses data-efficient logistic regressions (based on a simple nonlinear feature transformation), which require only 50 or 100 labeled examples to achieve excellent calibration error (ECE), cutting ECE by 50% compared to naive Platt scaling. On free-form generation tasks, we find that chain-of-thought is ineffectual for selective prediction, whereas zero-shot prompting drives error to 0% on TruthfulQA at high abstention rates. As LLMs are increasingly deployed across computing environments with different capabilities (such as mobile, laptop, and cloud), our framework paves the way towards maintaining deployment efficiency while putting in place sharp risk controls. |
10 pages |
A LLM-Powered Automatic Grading Framework with Human-Level Guidelines Optimization | 2024-10-03 | ShowOpen-ended short-answer questions (SAGs) have been widely recognized as a powerful tool for providing deeper insights into learners' responses in the context of learning analytics (LA). However, SAGs often present challenges in practice due to the high grading workload and concerns about inconsistent assessments. With recent advancements in natural language processing (NLP), automatic short-answer grading (ASAG) offers a promising solution to these challenges. Despite this, current ASAG algorithms are often limited in generalizability and tend to be tailored to specific questions. In this paper, we propose a unified multi-agent ASAG framework, GradeOpt, which leverages large language models (LLMs) as graders for SAGs. More importantly, GradeOpt incorporates two additional LLM-based agents - the reflector and the refiner - into the multi-agent system. This enables GradeOpt to automatically optimize the original grading guidelines by performing self-reflection on its errors. Through experiments on a challenging ASAG task, namely the grading of pedagogical content knowledge (PCK) and content knowledge (CK) questions, GradeOpt demonstrates superior performance in grading accuracy and behavior alignment with human graders compared to representative baselines. Finally, comprehensive ablation studies confirm the effectiveness of the individual components designed in GradeOpt. |
|
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing | 2024-10-03 | ShowThis work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis. |
Accep...Accepted by EMNLP 2024 main conference |
Can Active Label Correction Improve LLM-based Modular AI Systems? | 2024-10-03 | ShowModular AI systems can be developed using LLM-prompts-based modules to minimize deployment time even for complex tasks. However, these systems do not always perform well and improving them using the data traces collected from a deployment remains an open challenge. The data traces contain LLM inputs and outputs, but the annotations from LLMs are noisy. We hypothesize that Active Label Correction (ALC) can be use on the collected data to train smaller task-specific improved models that can replace LLM-based modules. In this paper, we study the noise in three GPT-3.5-annotated datasets and their denoising with human feedback. We also propose a novel method ALC3 that iteratively applies three updates to the training dataset: auto-correction, correction using human feedback and filtering. Our results show that ALC3 can lead to oracle performance with feedback on 17-24% fewer examples than the number of noisy examples in the dataset across three different NLP tasks. |
EMNLP...EMNLP (Main) 2024, 13 pages, 6 figures |
Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives | 2024-10-03 | ShowThe Chain-of-Thought (CoT) paradigm has become a pivotal method for solving complex problems. However, its application to intricate, domain-specific tasks remains challenging, as large language models (LLMs) often struggle to accurately decompose these tasks and, even when decomposition is correct, fail to execute the subtasks effectively. This paper introduces the Re-TASK framework, a novel theoretical model that revisits LLM tasks from the perspectives of capability, skill, and knowledge, drawing on the principles of Bloom's Taxonomy and Knowledge Space Theory. While CoT offers a workflow perspective on tasks, the Re-TASK framework introduces a Chain-of-Learning view, illustrating how tasks and their corresponding subtasks depend on various capability items. Each capability item is further dissected into its constituent aspects of knowledge and skills. Our framework reveals that many CoT failures in domain-specific tasks stem from insufficient knowledge or inadequate skill adaptation. In response, we combine CoT with the Re-TASK framework and implement a carefully designed Re-TASK prompting strategy to improve task performance. Specifically, we identify core capability items linked to tasks and subtasks, then strengthen these capabilities through targeted knowledge injection and skill adaptation. We validate the Re-TASK framework on three datasets across the law, finance, and mathematics domains, achieving significant improvements over the baseline models. Notably, our approach yields a remarkable 44.42% improvement with the Yi-1.5-9B model and a 33.08% improvement with the Llama3-Chinese-8b on the legal dataset. These experimental results confirm the effectiveness of the Re-TASK framework, demonstrating substantial enhancements in both the performance and applicability of LLMs. |
Prepr...Preprint; First three authors contributed equally |
Title | Date | Abstract | Comment |
---|---|---|---|
Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise | 2024-10-04 | ShowRecently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion. |
NeurIPS 2024 |
DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models | 2024-10-04 | ShowThis paper introduces a method for zero-shot video restoration using pre-trained image restoration diffusion models. Traditional video restoration methods often need retraining for different settings and struggle with limited generalization across various degradation types and datasets. Our approach uses a hierarchical token merging strategy for keyframes and local frames, combined with a hybrid correspondence mechanism that blends optical flow and feature-based nearest neighbor matching (latent merging). We show that our method not only achieves top performance in zero-shot video restoration but also significantly surpasses trained models in generalization across diverse datasets and extreme degradations (8$\times$ super-resolution and high-standard deviation video denoising). We present evidence through quantitative metrics and visual comparisons on various challenging datasets. Additionally, our technique works with any 2D restoration diffusion model, offering a versatile and powerful tool for video enhancement tasks without extensive retraining. This research leads to more efficient and widely applicable video restoration technologies, supporting advancements in fields that require high-quality video output. See our project page for video results and source code at https://jimmycv07.github.io/DiffIR2VR_web/. |
Proje...Project page: https://jimmycv07.github.io/DiffIR2VR_web/ |
Diffusion State-Guided Projected Gradient for Inverse Problems | 2024-10-04 | ShowRecent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. |
prepr...preprint. under review. RZ and BT have equal contributions |
Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration | 2024-10-04 | ShowAlthough learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise space using diffusion models. In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss that guides the restoration model in progressively aligning both restored synthetic and real-world outputs with a target clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during joint training, we present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model. They implicitly blur the boundaries between conditioned synthetic and real data and prevent the reliance of the model on easily distinguishable features. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method. |
Proje...Project Page: https://kangliao929.github.io/projects/noise-da/ |
Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey | 2024-10-04 | ShowShadow removal aims at restoring the image content within shadow regions, pursuing a uniform distribution of illumination that is consistent between shadow and non-shadow regions. {Comparing to other image restoration tasks, there are two unique challenges in shadow removal:} 1) The patterns of shadows are arbitrary, varied, and often have highly complex trace structures, making ``trace-less'' image recovery difficult. 2) The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas. Recent developments in this field are primarily driven by deep learning-based solutions, employing a variety of learning strategies, network architectures, loss functions, and training data. Nevertheless, a thorough and insightful review of deep learning-based shadow removal techniques is still lacking. In this paper, we are the first to provide a comprehensive survey to cover various aspects ranging from technical details to applications. We highlight the major advancements in deep learning-based single-image shadow removal methods, thoroughly review previous research across various categories, and provide insights into the historical progression of these developments. Additionally, we summarize performance comparisons both quantitatively and qualitatively. Beyond the technical aspects of shadow removal methods, we also explore potential future directions for this field. |
url: ... |
TransRef: Multi-Scale Reference Embedding Transformer for Reference-Guided Image Inpainting | 2024-10-03 | ShowImage inpainting for completing complicated semantic environments and diverse hole patterns of corrupted images is challenging even for state-of-the-art learning-based inpainting methods trained on large-scale data. A reference image capturing the same scene of a corrupted image offers informative guidance for completing the corrupted image as it shares similar texture and structure priors to that of the holes of the corrupted image. In this work, we propose a transformer-based encoder-decoder network, named TransRef, for reference-guided image inpainting. Specifically, the guidance is conducted progressively through a reference embedding procedure, in which the referencing features are subsequently aligned and fused with the features of the corrupted image. For precise utilization of the reference features for guidance, a reference-patch alignment (Ref-PA) module is proposed to align the patch features of the reference and corrupted images and harmonize their style differences, while a reference-patch transformer (Ref-PT) module is proposed to refine the embedded reference feature. Moreover, to facilitate the research of reference-guided image restoration tasks, we construct a publicly accessible benchmark dataset containing 50K pairs of input and reference images. Both quantitative and qualitative evaluations demonstrate the efficacy of the reference information and the proposed method over the state-of-the-art methods in completing complex holes. Code and dataset can be accessed at https://github.com/Cameltr/TransRef. |
Under review |
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching | 2024-10-03 | ShowIn this paper, we introduce Plug-and-Play (PnP) Flow Matching, an algorithm for solving imaging inverse problems. PnP methods leverage the strength of pre-trained denoisers, often deep neural networks, by integrating them in optimization schemes. While they achieve state-of-the-art performance on various inverse problems in imaging, PnP approaches face inherent limitations on more generative tasks like inpainting. On the other hand, generative models such as Flow Matching pushed the boundary in image sampling yet lack a clear method for efficient use in image restoration. We propose to combine the PnP framework with Flow Matching (FM) by defining a time-dependent denoiser using a pre-trained FM model. Our algorithm alternates between gradient descent steps on the data-fidelity term, reprojections onto the learned FM path, and denoising. Notably, our method is computationally efficient and memory-friendly, as it avoids backpropagation through ODEs and trace computations. We evaluate its performance on denoising, super-resolution, deblurring, and inpainting tasks, demonstrating superior results compared to existing PnP algorithms and Flow Matching based state-of-the-art methods. |
|
Rethinking and Defending Protective Perturbation in Personalized Diffusion Models | 2024-10-03 | ShowPersonalized diffusion models (PDMs) have become prominent for adapting pretrained text-to-image models to generate images of specific subjects using minimal training data. However, PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets. These vulnerabilities are exploited to create protective perturbations that prevent unauthorized image generation. Existing purification methods attempt to mitigate this issue but often over-purify images, resulting in information loss. In this work, we conduct an in-depth analysis of the fine-tuning process of PDMs through the lens of shortcut learning. We hypothesize and empirically demonstrate that adversarial perturbations induce a latent-space misalignment between images and their text prompts in the CLIP embedding space. This misalignment causes the model to erroneously associate noisy patterns with unique identifiers during fine-tuning, resulting in poor generalization. Based on these insights, we propose a systematic defense framework that includes data purification and contrastive decoupling learning. We first employ off-the-shelf image restoration techniques to realign images with their original semantic meanings in latent space. Then, we introduce contrastive decoupling learning with noise tokens to decouple the learning of personalized concepts from spurious noise patterns. Our study not only uncovers fundamental shortcut learning vulnerabilities in PDMs but also provides a comprehensive evaluation framework for developing stronger protection. Our extensive evaluation demonstrates its superiority over existing purification methods and stronger robustness against adaptive perturbation. |
Our c...Our code is available at https://github.com/liuyixin-louis/DiffShortcut |
Posterior sampling via Langevin dynamics based on generative priors | 2024-10-02 | ShowPosterior sampling in high-dimensional spaces using generative models holds significant promise for various applications, including but not limited to inverse problems and guided generation tasks. Despite many recent developments, generating diverse posterior samples remains a challenge, as existing methods require restarting the entire generative process for each new sample, making the procedure computationally expensive. In this work, we propose efficient posterior sampling by simulating Langevin dynamics in the noise space of a pre-trained generative model. By exploiting the mapping between the noise and data spaces which can be provided by distilled flows or consistency models, our method enables seamless exploration of the posterior without the need to re-run the full sampling chain, drastically reducing computational overhead. Theoretically, we prove a guarantee for the proposed noise-space Langevin dynamics to approximate the posterior, assuming that the generative model sufficiently approximates the prior distribution. Our framework is experimentally validated on image restoration tasks involving noisy linear and nonlinear forward operators applied to LSUN-Bedroom (256 x 256) and ImageNet (64 x 64) datasets. The results demonstrate that our approach generates high-fidelity samples with enhanced semantic diversity even under a limited number of function evaluations, offering superior efficiency and performance compared to existing diffusion-based posterior sampling techniques. |
|
Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration | 2024-10-01 | ShowPhoto-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks. |
|
GLMHA A Guided Low-rank Multi-Head Self-Attention for Efficient Image Restoration and Spectral Reconstruction | 2024-10-01 | ShowImage restoration and spectral reconstruction are longstanding computer vision tasks. Currently, CNN-transformer hybrid models provide state-of-the-art performance for these tasks. The key common ingredient in the architectural designs of these models is Channel-wise Self-Attention (CSA). We first show that CSA is an overall low-rank operation. Then, we propose an instance-Guided Low-rank Multi-Head selfattention (GLMHA) to replace the CSA for a considerable computational gain while closely retaining the original model performance. Unique to the proposed GLMHA is its ability to provide computational gain for both short and long input sequences. In particular, the gain is in terms of both Floating Point Operations (FLOPs) and parameter count reduction. This is in contrast to the existing popular computational complexity reduction techniques, e.g., Linformer, Performer, and Reformer, for whom FLOPs overpower the efficient design tricks for the shorter input sequences. Moreover, parameter reduction remains unaccounted for in the existing methods.We perform an extensive evaluation for the tasks of spectral reconstruction from RGB images, spectral reconstruction from snapshot compressive imaging, motion deblurring, and image deraining by enhancing the best-performing models with our GLMHA. Our results show up to a 7.7 Giga FLOPs reduction with 370K fewer parameters required to closely retain the original performance of the best-performing models that employ CSA. |
|
A Survey on Diffusion Models for Inverse Problems | 2024-09-30 | ShowDiffusion models have become increasingly popular for generative modeling due to their ability to generate high-quality samples. This has unlocked exciting new possibilities for solving inverse problems, especially in image restoration and reconstruction, by treating diffusion models as unsupervised priors. This survey provides a comprehensive overview of methods that utilize pre-trained diffusion models to solve inverse problems without requiring further training. We introduce taxonomies to categorize these methods based on both the problems they address and the techniques they employ. We analyze the connections between different approaches, offering insights into their practical implementation and highlighting important considerations. We further discuss specific challenges and potential solutions associated with using latent diffusion models for inverse problems. This work aims to be a valuable resource for those interested in learning about the intersection of diffusion models and inverse problems. |
Work ...Work in progress. 38 pages |
UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation | 2024-09-30 | ShowExisting unified methods typically treat multi-degradation image restoration as a multi-task learning problem. Despite performing effectively compared to single degradation restoration methods, they overlook the utilization of commonalities and specificities within multi-task restoration, thereby impeding the model's performance. Inspired by the success of deep generative models and fine-tuning techniques, we proposed a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning. Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks using low-rank adaptation. Additionally, we introduce a LoRA composing strategy based on the degradation similarity, which adaptively combines trained LoRAs and enables our model to be applicable for mixed degradation restoration. Extensive experiments on multiple and mixed degradations demonstrate that the proposed universal image restoration method not only achieves higher fidelity and perceptual image quality but also has better generalization ability than other unified image restoration models. Our code is available at https://github.com/Justones/UIR-LoRA. |
|
MixNet: Efficient Global Modeling for Ultra-High-Definition Image Restoration | 2024-09-29 | ShowRecent advancements in image restoration methods employing global modeling have shown promising results. However, these approaches often incur substantial memory requirements, particularly when processing ultra-high-definition (UHD) images. In this paper, we propose a novel image restoration method called MixNet, which introduces an alternative approach to global modeling approaches and is more effective for UHD image restoration. To capture the longrange dependency of features without introducing excessive computational complexity, we present the Global Feature Modulation Layer (GFML). GFML associates features from different views by permuting the feature maps, enabling efficient modeling of long-range dependency. In addition, we also design the Local Feature Modulation Layer (LFML) and Feed-forward Layer (FFL) to capture local features and transform features into a compact representation. This way, our MixNetachieves effective restoration with low inference time overhead and computational complexity. We conduct extensive experiments on four UHD image restoration tasks, including low-light image enhancement, underwater image enhancement, image deblurring and image demoireing, and the comprehensive results demonstrate that our proposed method surpasses the performance of current state-of-the-art methods. The code will be available at \url{https://github.com/5chen/MixNet}. |
under review |
Restore Anything with Masks: Leveraging Mask Image Modeling for Blind All-in-One Image Restoration | 2024-09-28 | ShowAll-in-one image restoration aims to handle multiple degradation types using one model. This paper proposes a simple pipeline for all-in-one blind image restoration to Restore Anything with Masks (RAM). We focus on the image content by utilizing Mask Image Modeling to extract intrinsic image information rather than distinguishing degradation types like other methods. Our pipeline consists of two stages: masked image pre-training and fine-tuning with mask attribute conductance. We design a straightforward masking pre-training approach specifically tailored for all-in-one image restoration. This approach enhances networks to prioritize the extraction of image content priors from various degradations, resulting in a more balanced performance across different restoration tasks and achieving stronger overall results. To bridge the gap of input integrity while preserving learned image priors as much as possible, we selectively fine-tuned a small portion of the layers. Specifically, the importance of each layer is ranked by the proposed Mask Attribute Conductance (MAC), and the layers with higher contributions are selected for finetuning. Extensive experiments demonstrate that our method achieves state-of-the-art performance. Our code and model will be released at \href{https://github.com/Dragonisss/RAM}{https://github.com/Dragonisss/RAM}. |
Accep...Accepted by ECCV 2024 |
Implicit Image-to-Image Schrodinger Bridge for Image Restoration | 2024-09-27 | ShowDiffusion-based models are widely recognized for their effectiveness in image restoration tasks; however, their iterative denoising process, which begins from Gaussian noise, often results in slow inference speeds. The Image-to-Image Schr"odinger Bridge (I$^2$SB) presents a promising alternative by starting the generative process from corrupted images and leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schr"odinger Bridge (I$^3$SB) to further accelerate the generative process of I$^2$SB. I$^3$SB reconfigures the generative process into a non-Markovian framework by incorporating the initial corrupted image into each step, while ensuring that the marginal distribution aligns with that of I$^2$SB. This allows for the direct use of the pretrained network from I$^2$SB. Extensive experiments on natural images, human face images, and medical images validate the acceleration benefits of I$^3$SB. Compared to I$^2$SB, I$^3$SB achieves the same perceptual quality with fewer generative steps, while maintaining equal or improved fidelity to the ground truth. |
23 pa...23 pages, 8 figures, submitted to Pattern Recognition |
Ultra-High-Definition Image Restoration: New Benchmarks and A Dual Interaction Prior-Driven Solution | 2024-09-27 | ShowUltra-High-Definition (UHD) image restoration has acquired remarkable attention due to its practical demand. In this paper, we construct UHD snow and rain benchmarks, named UHD-Snow and UHD-Rain, to remedy the deficiency in this field. The UHD-Snow/UHD-Rain is established by simulating the physics process of rain/snow into consideration and each benchmark contains 3200 degraded/clear image pairs of 4K resolution. Furthermore, we propose an effective UHD image restoration solution by considering gradient and normal priors in model design thanks to these priors' spatial and detail contributions. Specifically, our method contains two branches: (a) feature fusion and reconstruction branch in high-resolution space and (b) prior feature interaction branch in low-resolution space. The former learns high-resolution features and fuses prior-guided low-resolution features to reconstruct clear images, while the latter utilizes normal and gradient priors to mine useful spatial features and detail features to guide high-resolution recovery better. To better utilize these priors, we introduce single prior feature interaction and dual prior feature interaction, where the former respectively fuses normal and gradient priors with high-resolution features to enhance prior ones, while the latter calculates the similarity between enhanced prior ones and further exploits dual guided filtering to boost the feature interaction of dual priors. We conduct experiments on both new and existing public datasets and demonstrate the state-of-the-art performance of our method on UHD image low-light enhancement, dehazing, deblurring, desonwing, and deraining. The source codes and benchmarks are available at \url{https://github.com/wlydlut/UHDDIP}. |
|
Toward Efficient Deep Blind RAW Image Restoration | 2024-09-26 | ShowMultiple low-vision tasks such as denoising, deblurring and super-resolution depart from RGB images and further reduce the degradations, improving the quality. However, modeling the degradations in the sRGB domain is complicated because of the Image Signal Processor (ISP) transformations. Despite of this known issue, very few methods in the literature work directly with sensor RAW images. In this work we tackle image restoration directly in the RAW domain. We design a new realistic degradation pipeline for training deep blind RAW restoration models. Our pipeline considers realistic sensor noise, motion blur, camera shake, and other common degradations. The models trained with our pipeline and data from multiple sensors, can successfully reduce noise and blur, and recover details in RAW images captured from different cameras. To the best of our knowledge, this is the most exhaustive analysis on RAW image restoration. Code available at https://github.com/mv-lab/AISP |
IEEE ...IEEE International Conference on Image Processing (ICIP) 2024. arXiv admin note: text overlap with arXiv:2312.15487 |
Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs | 2024-09-26 | ShowDiffusion-based image super-resolution (SR) models have attracted substantial interest due to their powerful image restoration capabilities. However, prevailing diffusion models often struggle to strike an optimal balance between efficiency and performance. Typically, they either neglect to exploit the potential of existing extensive pretrained models, limiting their generative capacity, or they necessitate a dozens of forward passes starting from random noises, compromising inference efficiency. In this paper, we present DoSSR, a Domain Shift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models while significantly enhancing efficiency by initiating the diffusion process with low-resolution (LR) images. At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models. This integration not only improves the use of diffusion prior but also boosts inference efficiency. Moreover, we advance our method by transitioning the discrete shift process to a continuous formulation, termed as DoS-SDEs. This advancement leads to the fast and customized solvers that further enhance sampling efficiency. Empirical results demonstrate that our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring only 5 sampling steps. Compared to previous diffusion prior based methods, our approach achieves a remarkable speedup of 5-7 times, demonstrating its superior efficiency. Code: https://github.com/QinpengCui/DoSSR. |
This ...This paper is accepted by NeurIPS 2024 |
InstructIR: High-Quality Image Restoration Following Human Instructions | 2024-09-25 | ShowImage restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement. Our code, datasets and models are available at: https://github.com/mv-lab/InstructIR |
Europ...European Conference on Computer Vision (ECCV) 2024 |
OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal | 2024-09-25 | ShowDeep learning-based methods have shown remarkable performance in single JPEG artifacts removal task. However, existing methods tend to degrade on double JPEG images, which are prevalent in real-world scenarios. To address this issue, we propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT. We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block and design our model to cluster the similar patterns to remedy the difficulty of restoration. Our OAPT consists of two components: compression offset predictor and image reconstructor. Specifically, the predictor estimates pixel offsets between the first and second compression, which are then utilized to divide different patterns. The reconstructor is mainly based on several Hybrid Partition Attention Blocks (HPAB), combining vanilla window-based self-attention and sparse attention for clustered pattern features. Extensive experiments demonstrate that OAPT outperforms the state-of-the-art method by more than 0.16dB in double JPEG image restoration task. Moreover, without increasing any computation cost, the pattern clustering module in HPAB can serve as a plugin to enhance other transformer-based image restoration methods. The code will be available at https://github.com/QMoQ/OAPT.git . |
14 pa...14 pages, 9 figures. Codes and models are available at https://github.com/QMoQ/OAPT.git |
The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation | 2024-09-24 | ShowAccurate depth estimation under out-of-distribution (OoD) scenarios, such as adverse weather conditions, sensor failure, and noise contamination, is desirable for safety-critical applications. Existing depth estimation systems, however, suffer inevitably from real-world corruptions and perturbations and are struggled to provide reliable depth predictions under such cases. In this paper, we summarize the winning solutions from the RoboDepth Challenge -- an academic competition designed to facilitate and advance robust OoD depth estimation. This challenge was developed based on the newly established KITTI-C and NYUDepth2-C benchmarks. We hosted two stand-alone tracks, with an emphasis on robust self-supervised and robust fully-supervised depth estimation, respectively. Out of more than two hundred participants, nine unique and top-performing solutions have appeared, with novel designs ranging from the following aspects: spatial- and frequency-domain augmentations, masked image modeling, image restoration and super-resolution, adversarial training, diffusion-based noise suppression, vision-language pre-training, learned model ensembling, and hierarchical feature enhancement. Extensive experimental analyses along with insightful observations are drawn to better understand the rationale behind each design. We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation and beyond. The datasets, competition toolkit, workshop recordings, and source code from the winning teams are publicly available on the challenge website. |
Techn...Technical Report; 65 pages, 34 figures, 24 tables; Code at https://github.com/ldkong1205/RoboDepth |
Lightweight single-image super-resolution network based on dual paths | 2024-09-24 | ShowThe single image super-resolution(SISR) algorithms under deep learning currently have two main models, one based on convolutional neural networks and the other based on Transformer. The former uses the stacking of convolutional layers with different convolutional kernel sizes to design the model, which enables the model to better extract the local features of the image; the latter uses the self-attention mechanism to design the model, which allows the model to establish long-distance dependencies between image pixel points through the self-attention mechanism and then better extract the global features of the image. However, both of the above methods face their problems. Based on this, this paper proposes a new lightweight multi-scale feature fusion network model based on two-way complementary convolutional and Transformer, which integrates the respective features of Transformer and convolutional neural networks through a two-branch network architecture, to realize the mutual fusion of global and local information. Meanwhile, considering the partial loss of information caused by the low-pixel images trained by the deep neural network, this paper designs a modular connection method of multi-stage feature supplementation to fuse the feature maps extracted from the shallow stage of the model with those extracted from the deep stage of the model, to minimize the loss of the information in the feature images that is beneficial to the image restoration as much as possible, to facilitate the obtaining of a higher-quality restored image. The practical results finally show that the model proposed in this paper is optimal in image recovery performance when compared with other lightweight models with the same amount of parameters. |
|
Perception-Distortion Balanced Super-Resolution: A Multi-Objective Optimization Perspective | 2024-09-24 | ShowHigh perceptual quality and low distortion degree are two important goals in image restoration tasks such as super-resolution (SR). Most of the existing SR methods aim to achieve these goals by minimizing the corresponding yet conflicting losses, such as the |
|
Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction | 2024-09-24 | ShowThe inductive bias of the convolutional neural network (CNN) can be a strong prior for image restoration, which is known as the Deep Image Prior (DIP). Recently, DIP is utilized in unsupervised dynamic MRI reconstruction, which adopts a generative model from the latent space to the image space. However, existing methods usually use a pyramid-shaped CNN generator shared by all frames, embedding the temporal modeling within the latent space, which may hamper the model expression capability. In this work, we propose a novel scheme for dynamic MRI representation, named ``Graph Image Prior'' (GIP). GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame, and then exploits the spatio-temporal correlations within the feature space parameterized by a graph model. A graph convolutional network is utilized for feature fusion and dynamic image generation. In addition, we devise an ADMM algorithm to alternately optimize the images and the network parameters to improve the reconstruction performance. Experiments were conducted on cardiac cine MRI reconstruction, which demonstrate that GIP outperforms compressed sensing methods and other DIP-based unsupervised methods, significantly reducing the performance gap with state-of-the-art supervised algorithms. Moreover, GIP displays superior generalization ability when transferred to a different reconstruction setting, without the need for any additional data. |
The c...The conclusion about reconstruction performance with the size of the latent variable is not stable, we must validate it before presenting it to other researchers |
PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions | 2024-09-23 | ShowThis paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard |
Code ...Code is released at https://github.com/AFeng-x/PixWizard |
One-Shot Image Restoration | 2024-09-23 | ShowImage restoration, or inverse problems in image processing, has long been an extensively studied topic. In recent years supervised learning approaches have become a popular strategy attempting to tackle this task. Unfortunately, most supervised learning-based methods are highly demanding in terms of computational resources and training data (sample complexity). In addition, trained models are sensitive to domain changes, such as varying acquisition systems, signal sampling rates, resolution and contrast. In this work, we try to answer a fundamental question: Can supervised learning models generalize well solely by learning from one image or even part of an image? If so, then what is the minimal amount of patches required to achieve acceptable generalization? To this end, we focus on an efficient patch-based learning framework that requires a single image input-output pair for training. Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution. Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity, that can hopefully be leveraged for future real-time applications, and applied to other signals and modalities. |
arXiv...arXiv admin note: text overlap with arXiv:2209.14267 |
Dequantization and Color Transfer with Diffusion Models | 2024-09-21 | ShowWe demonstrate an image dequantizing diffusion model that enables novel image edits on natural images. We propose operating on quantized images because they offer easy abstraction for patch-based edits and palette transfer. In particular, we show that color palettes can make the output of the diffusion model easier to control and interpret. We first establish that existing image restoration methods are not sufficient, such as JPEG noise reduction models. We then demonstrate that our model can generate natural images that respect the color palette the user asked for. For palette transfer, we propose a method based on weighted bipartite matching. We then show that our model generates plausible images even after extreme palette transfers, respecting user query. Our method can optionally condition on the source texture in part or all of the image. In doing so, we overcome a common problem in existing image colorization methods that are unable to produce colors with a different luminance than the input. We evaluate several possibilities for texture conditioning and their trade-offs, including luminance, image gradients, and thresholded gradients, the latter of which performed best in maintaining texture and color control simultaneously. Our method can be usefully extended to another practical edit: recoloring patches of an image while respecting the source texture. Our procedure is supported by several qualitative and quantitative evaluations. |
23 pa...23 pages, 21 figures, 4 tables |
Denoising diffusion models for high-resolution microscopy image restoration | 2024-09-18 | ShowAdvances in microscopy imaging enable researchers to visualize structures at the nanoscale level thereby unraveling intricate details of biological organization. However, challenges such as image noise, photobleaching of fluorophores, and low tolerability of biological samples to high light doses remain, restricting temporal resolutions and experiment durations. Reduced laser doses enable longer measurements at the cost of lower resolution and increased noise, which hinders accurate downstream analyses. Here we train a denoising diffusion probabilistic model (DDPM) to predict high-resolution images by conditioning the model on low-resolution information. Additionally, the probabilistic aspect of the DDPM allows for repeated generation of images that tend to further increase the signal-to-noise ratio. We show that our model achieves a performance that is better or similar to the previously best-performing methods, across four highly diverse datasets. Importantly, while any of the previous methods show competitive performance for some, but not all datasets, our method consistently achieves high performance across all four data sets, suggesting high generalizability. |
|
Inverse Problems with Diffusion Models: A MAP Estimation Perspective | 2024-09-18 | ShowInverse problems have many applications in science and engineering. In Computer vision, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems. Recently, methods have been developed for solving inverse problems that only leverage a pre-trained unconditional diffusion model and do not require additional task-specific training. In such methods, however, the inherent intractability of determining the conditional score function during the reverse diffusion process poses a real challenge, leaving the methods to settle with an approximation instead, which affects their performance in practice. Here, we propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model as an optimization process of the underlying MAP objective, whose gradient term is tractable. In theory, the proposed framework can be applied to solve general inverse problems using gradient-based optimization methods. However, given the highly non-convex nature of the loss objective, finding a perfect gradient-based optimization algorithm can be quite challenging, nevertheless, our framework offers several potential research directions. We use our proposed formulation to develop empirically effective algorithms for image restoration. We validate our proposed algorithms with extensive experiments over multiple datasets across several restoration tasks. |
|
Taming Diffusion Models for Image Restoration: A Review | 2024-09-16 | ShowDiffusion models have achieved remarkable progress in generative modelling, particularly in enhancing image quality to conform to human preferences. Recently, these models have also been applied to low-level computer vision for photo-realistic image restoration (IR) in tasks such as image denoising, deblurring, dehazing, etc. In this review paper, we introduce key constructions in diffusion models and survey contemporary techniques that make use of diffusion models in solving general IR tasks. Furthermore, we point out the main challenges and limitations of existing diffusion-based IR frameworks and provide potential directions for future work. |
Revie...Review paper; any comments and suggestions are most welcome! |
Efficient Diffusion Model for Image Restoration by Residual Shifting | 2024-09-13 | ShowWhile diffusion-based image restoration (IR) methods have achieved remarkable success, they are still limited by the low inference speed attributed to the necessity of executing hundreds or even thousands of sampling steps. Existing acceleration sampling techniques, though seeking to expedite the process, inevitably sacrifice performance to some extent, resulting in over-blurry restored outcomes. To address this issue, this study proposes a novel and efficient diffusion model for IR that significantly reduces the required number of diffusion steps. Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration. Specifically, our proposed method establishes a Markov chain that facilitates the transitions between the high-quality and low-quality images by shifting their residuals, substantially improving the transition efficiency. A carefully formulated noise schedule is devised to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experimental evaluations demonstrate that the proposed method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks, namely image super-resolution, image inpainting, and blind face restoration, \textit{\textbf{even only with four sampling steps}}. Our code and model are publicly available at \url{https://github.com/zsyOAOA/ResShift}. |
Accep...Accepted by TPAMI@2024. Code: https://github.com/zsyOAOA/ResShift |
Variational Bayes image restoration with compressive autoencoders | 2024-09-12 | ShowRegularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling.Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties significantly faster than other existing posterior sampling techniques. |
|
Quaternion Nuclear Norm minus Frobenius Norm Minimization for color image reconstruction | 2024-09-12 | ShowColor image restoration methods typically represent images as vectors in Euclidean space or combinations of three monochrome channels. However, they often overlook the correlation between these channels, leading to color distortion and artifacts in the reconstructed image. To address this, we present Quaternion Nuclear Norm Minus Frobenius Norm Minimization (QNMF), a novel approach for color image reconstruction. QNMF utilizes quaternion algebra to capture the relationships among RGB channels comprehensively. By employing a regularization technique that involves nuclear norm minus Frobenius norm, QNMF approximates the underlying low-rank structure of quaternion-encoded color images. Theoretical proofs are provided to ensure the method's mathematical integrity. Demonstrating versatility and efficacy, the QNMF regularizer excels in various color low-level vision tasks, including denoising, deblurring, inpainting, and random impulse noise removal, achieving state-of-the-art results. |
This ...This paper was accepted by Pattern Recognition on September 5, 2024 |
In-Loop Filtering via Trained Look-Up Tables | 2024-09-11 | ShowIn-loop filtering (ILF) is a key technology for removing the artifacts in image/video coding standards. Recently, neural network-based in-loop filtering methods achieve remarkable coding gains beyond the capability of advanced video coding standards, which becomes a powerful coding tool candidate for future video coding standards. However, the utilization of deep neural networks brings heavy time and computational complexity, and high demands of high-performance hardware, which is challenging to apply to the general uses of coding scene. To address this limitation, inspired by explorations in image restoration, we propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table (LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache the output values of the DNN into a LUT via traversing all possible inputs. At testing time in the coding process, the filtered pixel is generated by locating input pixels (to-be-filtered pixel with reference pixels) and interpolating cached filtered pixel values. To further enable the large filtering reference range with the limited storage cost of LUT, we introduce the enhanced indexing mechanism in the filtering process, and clipping/finetuning mechanism in the training. The proposed method is implemented into the Versatile Video Coding (VVC) reference software, VTM-11.0. Experimental results show that the ultrafast, very fast, and fast mode of the proposed method achieves on average 0.13%/0.34%/0.51%, and 0.10%/0.27%/0.39% BD-rate reduction, under the all intra (AI) and random access (RA) configurations. Especially, our method has friendly time and computational complexity, only 101%/102%-104%/108% time increase with 0.13-0.93 kMACs/pixel, and only 164-1148 KB storage cost for a single model. Our solution may shed light on the journey of practical neural network-based coding tool evolution. |
11 pages, 6 figures |
PanAdapter: Two-Stage Fine-Tuning with Spatial-Spectral Priors Injecting for Pansharpening | 2024-09-11 | ShowPansharpening is a challenging image fusion task that involves restoring images using two different modalities: low-resolution multispectral images (LRMS) and high-resolution panchromatic (PAN). Many end-to-end specialized models based on deep learning (DL) have been proposed, yet the scale and performance of these models are limited by the size of dataset. Given the superior parameter scales and feature representations of pre-trained models, they exhibit outstanding performance when transferred to downstream tasks with small datasets. Therefore, we propose an efficient fine-tuning method, namely PanAdapter, which utilizes additional advanced semantic information from pre-trained models to alleviate the issue of small-scale datasets in pansharpening tasks. Specifically, targeting the large domain discrepancy between image restoration and pansharpening tasks, the PanAdapter adopts a two-stage training strategy for progressively adapting to the downstream task. In the first stage, we fine-tune the pre-trained CNN model and extract task-specific priors at two scales by proposed Local Prior Extraction (LPE) module. In the second stage, we feed the extracted two-scale priors into two branches of cascaded adapters respectively. At each adapter, we design two parameter-efficient modules for allowing the two branches to interact and be injected into the frozen pre-trained VisionTransformer (ViT) blocks. We demonstrate that by only training the proposed LPE modules and adapters with a small number of parameters, our approach can benefit from pre-trained image restoration models and achieve state-of-the-art performance in several benchmark pansharpening datasets. The code will be available soon. |
|
Multi-Weather Image Restoration via Histogram-Based Transformer Feature Enhancement | 2024-09-10 | ShowCurrently, the mainstream restoration tasks under adverse weather conditions have predominantly focused on single-weather scenarios. However, in reality, multiple weather conditions always coexist and their degree of mixing is usually unknown. Under such complex and diverse weather conditions, single-weather restoration models struggle to meet practical demands. This is particularly critical in fields such as autonomous driving, where there is an urgent need for a model capable of effectively handling mixed weather conditions and enhancing image quality in an automated manner. In this paper, we propose a Task Sequence Generator module that, in conjunction with the Task Intra-patch Block, effectively extracts task-specific features embedded in degraded images. The Task Intra-patch Block introduces an external learnable sequence that aids the network in capturing task-specific information. Additionally, we employ a histogram-based transformer module as the backbone of our network, enabling the capture of both global and local dynamic range features. Our proposed model achieves state-of-the-art performance on public datasets. |
arXiv...arXiv admin note: text overlap with arXiv:2409.03249 |
AgileIR: Memory-Efficient Group Shifted Windows Attention for Agile Image Restoration | 2024-09-10 | ShowImage Transformers show a magnificent success in Image Restoration tasks. Nevertheless, most of transformer-based models are strictly bounded by exorbitant memory occupancy. Our goal is to reduce the memory consumption of Swin Transformer and at the same time speed up the model during training process. Thus, we introduce AgileIR, group shifted attention mechanism along with window attention, which sparsely simplifies the model in architecture. We propose Group Shifted Window Attention (GSWA) to decompose Shift Window Multi-head Self Attention (SW-MSA) and Window Multi-head Self Attention (W-MSA) into groups across their attention heads, contributing to shrinking memory usage in back propagation. In addition to that, we keep shifted window masking and its shifted learnable biases during training, in order to induce the model interacting across windows within the channel. We also re-allocate projection parameters to accelerate attention matrix calculation, which we found a negligible decrease in performance. As a result of experiment, compared with our baseline SwinIR and other efficient quantization models, AgileIR keeps the performance still at 32.20 dB on Set5 evaluation dataset, exceeding other methods with tailor-made efficient methods and saves over 50% memory while a large batch size is employed. |
|
Adversarial Purification and Fine-tuning for Robust UDC Image Restoration | 2024-09-08 | ShowThis study delves into the enhancement of Under-Display Camera (UDC) image restoration models, focusing on their robustness against adversarial attacks. Despite its innovative approach to seamless display integration, UDC technology faces unique image degradation challenges exacerbated by the susceptibility to adversarial perturbations. Our research initially conducts an in-depth robustness evaluation of deep-learning-based UDC image restoration models by employing several white-box and black-box attacking methods. This evaluation is pivotal in understanding the vulnerabilities of current UDC image restoration techniques. Following the assessment, we introduce a defense framework integrating adversarial purification with subsequent fine-tuning processes. First, our approach employs diffusion-based adversarial purification, effectively neutralizing adversarial perturbations. Then, we apply the fine-tuning methodologies to refine the image restoration models further, ensuring that the quality and fidelity of the restored images are maintained. The effectiveness of our proposed approach is validated through extensive experiments, showing marked improvements in resilience against typical adversarial attacks. |
|
Power Line Aerial Image Restoration under dverse Weather: Datasets and Baselines | 2024-09-07 | ShowPower Line Autonomous Inspection (PLAI) plays a crucial role in the construction of smart grids due to its great advantages of low cost, high efficiency, and safe operation. PLAI is completed by accurately detecting the electrical components and defects in the aerial images captured by Unmanned Aerial Vehicles (UAVs). However, the visible quality of aerial images is inevitably degraded by adverse weather like haze, rain, or snow, which are found to drastically decrease the detection accuracy in our research. To circumvent this problem, we propose a new task of Power Line Aerial Image Restoration under Adverse Weather (PLAIR-AW), which aims to recover clean and high-quality images from degraded images with bad weather thus improving detection performance for PLAI. In this context, we are the first to release numerous corresponding datasets, namely, HazeCPLID, HazeTTPLA, HazeInsPLAD for power line aerial image dehazing, RainCPLID, RainTTPLA, RainInsPLAD for power line aerial image deraining, SnowCPLID, SnowInsPLAD for power line aerial image desnowing, which are synthesized upon the public power line aerial image datasets of CPLID, TTPLA, InsPLAD following the mathematical models. Meanwhile, we select numerous state-of-the-art methods from image restoration community as the baseline methods for PLAIR-AW. At last, we conduct large-scale empirical experiments to evaluate the performance of baseline methods on the proposed datasets. The proposed datasets and trained models are available at https://github.com/ntuhubin/PLAIR-AW. |
|
Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior | 2024-09-06 | ShowScore-based diffusion methods provide a powerful strategy to solve image restoration tasks by flexibly combining a pre-trained foundational prior model with a likelihood function specified during test time. Such methods are predominantly derived from two stochastic processes: reversing Ornstein-Uhlenbeck, which underpins the celebrated denoising diffusion probabilistic models (DDPM) and denoising diffusion implicit models (DDIM), and the Langevin diffusion process. The solutions delivered by DDPM and DDIM are often remarkably realistic, but they are not always consistent with measurements because of likelihood intractability issues and the associated required approximations. Alternatively, using a Langevin process circumvents the intractable likelihood issue, but usually leads to restoration results of inferior quality and longer computing times. This paper presents a novel and highly computationally efficient image restoration method that carefully embeds a foundational DDPM denoiser within an empirical Bayesian Langevin algorithm, which jointly calibrates key model hyper-parameters as it estimates the model's posterior mean. Extensive experimental results on three canonical tasks (image deblurring, super-resolution, and inpainting) demonstrate that the proposed approach improves on state-of-the-art strategies both in image estimation accuracy and computing time. |
24 pages |
Data-free Distillation with Degradation-prompt Diffusion for Multi-weather Image Restoration | 2024-09-05 | ShowMulti-weather image restoration has witnessed incredible progress, while the increasing model capacity and expensive data acquisition impair its applications in memory-limited devices. Data-free distillation provides an alternative for allowing to learn a lightweight student model from a pre-trained teacher model without relying on the original training data. The existing data-free learning methods mainly optimize the models with the pseudo data generated by GANs or the real data collected from the Internet. However, they inevitably suffer from the problems of unstable training or domain shifts with the original data. In this paper, we propose a novel Data-free Distillation with Degradation-prompt Diffusion framework for multi-weather Image Restoration (D4IR). It replaces GANs with pre-trained diffusion models to avoid model collapse and incorporates a degradation-aware prompt adapter to facilitate content-driven conditional diffusion for generating domain-related images. Specifically, a contrast-based degradation prompt adapter is firstly designed to capture degradation-aware prompts from web-collected degraded images. Then, the collected unpaired clean images are perturbed to latent features of stable diffusion, and conditioned with the degradation-aware prompts to synthesize new domain-related degraded images for knowledge distillation. Experiments illustrate that our proposal achieves comparable performance to the model distilled with original training data, and is even superior to other mainstream unsupervised methods. |
|
Multiple weather images restoration using the task transformer and adaptive mixup strategy | 2024-09-05 | ShowThe current state-of-the-art in severe weather removal predominantly focuses on single-task applications, such as rain removal, haze removal, and snow removal. However, real-world weather conditions often consist of a mixture of several weather types, and the degree of weather mixing in autonomous driving scenarios remains unknown. In the presence of complex and diverse weather conditions, a single weather removal model often encounters challenges in producing clear images from severe weather images. Therefore, there is a need for the development of multi-task severe weather removal models that can effectively handle mixed weather conditions and improve image quality in autonomous driving scenarios. In this paper, we introduce a novel multi-task severe weather removal model that can effectively handle complex weather conditions in an adaptive manner. Our model incorporates a weather task sequence generator, enabling the self-attention mechanism to selectively focus on features specific to different weather types. To tackle the challenge of repairing large areas of weather degradation, we introduce Fast Fourier Convolution (FFC) to increase the receptive field. Additionally, we propose an adaptive upsampling technique that effectively processes both the weather task information and underlying image features by selectively retaining relevant information. Our proposed model has achieved state-of-the-art performance on the publicly available dataset. |
10 pa...10 pages, 5 figures and 2 table |
Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem | 2024-09-05 | ShowTraining Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores (e.g., PSNR and SSIM), but often results in blurry images due to insufficient recovery of high-frequency details. Conversely, using GAN or perceptual losses can produce sharp images with high perceptual metric scores (e.g., LPIPS), but may introduce artifacts and incorrect textures. Balancing these two types of losses can help achieve a trade-off between distortion and perception, but the challenge lies in tuning the loss function weights. To address this issue, we propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion. We conceptualize the relationship between loss weights and image quality assessment (IQA) metrics as black-box objective functions to be optimized within our Multi-Objective Bayesian Optimization Super-Resolution (MOBOSR) framework. This approach automates the hyperparameter tuning process, reduces overall computational cost, and enables the use of numerous loss functions simultaneously. Extensive experiments demonstrate that MOBOSR outperforms state-of-the-art methods in terms of both perceptual quality and distortion, significantly advancing the perception-distortion Pareto frontier. Our work points towards a new direction for future research on balancing perceptual quality and fidelity in nearly all image restoration tasks. The source code and pretrained models are available at: https://github.com/ZhuKeven/MOBOSR. |
|
Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models | 2024-09-03 | ShowThis paper addresses the limitations of adverse weather image restoration approaches trained on synthetic data when applied to real-world scenarios. We formulate a semi-supervised learning framework employing vision-language models to enhance restoration performance across diverse adverse weather conditions in real-world settings. Our approach involves assessing image clearness and providing semantics using vision-language models on real data, serving as supervision signals for training restoration models. For clearness enhancement, we use real-world data, utilizing a dual-step strategy with pseudo-labels assessed by vision-language models and weather prompt learning. For semantic enhancement, we integrate real-world data by adjusting weather conditions in vision-language model descriptions while preserving semantic meaning. Additionally, we introduce an effective training strategy to bootstrap restoration performance. Our approach achieves superior results in real-world adverse weather image restoration, demonstrated through qualitative and quantitative comparisons with state-of-the-art works. |
Accep...Accepted by ECCV 2024 |
F2former: When Fractional Fourier Meets Deep Wiener Deconvolution and Selective Frequency Transformer for Image Deblurring | 2024-09-03 | ShowRecent progress in image deblurring techniques focuses mainly on operating in both frequency and spatial domains using the Fourier transform (FT) properties. However, their performance is limited due to the dependency of FT on stationary signals and its lack of capability to extract spatial-frequency properties. In this paper, we propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation leveraging both spatial and frequency components simultaneously, making it ideal for processing non-stationary signals like images. Specifically, we introduce a Fractional Fourier Transformer (F2former), where we combine the classical fractional Fourier based Wiener deconvolution (F2WD) as well as a multi-branch encoder-decoder transformer based on a new fractional frequency aware transformer block (F2TB). We design F2TB consisting of a fractional frequency aware self-attention (F2SA) to estimate element-wise product attention based on important frequency components and a novel feed-forward network based on frequency division multiplexing (FM-FFN) to refine high and low frequency features separately for efficient latent clear image restoration. Experimental results for the cases of both motion deblurring as well as defocus deblurring show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches. |
20 pages, 21 figures |
Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance | 2024-09-03 | ShowThere are many excellent solutions in image restoration.However, most methods require on training separate models to restore images with different types of degradation.Although existing all-in-one models effectively address multiple types of degradation simultaneously, their performance in real-world scenarios is still constrained by the task confusion problem.In this work, we attempt to address this issue by introducing \textbf{Restorer}, a novel Transformer-based all-in-one image restoration model.To effectively address the complex degradation present in real-world images, we propose All-Axis Attention (AAA), a mechanism that simultaneously models long-range dependencies across both spatial and channel dimensions, capturing potential correlations along all axes.Additionally, we introduce textual prompts in Restorer to incorporate explicit task priors, enabling the removal of specific degradation types based on user instructions. By iterating over these prompts, Restorer can handle composite degradation in real-world scenarios without requiring additional training.Based on these designs, Restorer with one set of parameters demonstrates state-of-the-art performance in multiple image restoration tasks compared to existing all-in-one and even single-task models.Additionally, Restorer is efficient during inference, suggesting the potential in real-world applications. |
|
GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting | 2024-09-03 | ShowDense colored point clouds enhance visual perception and are of significant value in various robotic applications. However, existing learning-based point cloud upsampling methods are constrained by computational resources and batch processing strategies, which often require subdividing point clouds into smaller patches, leading to distortions that degrade perceptual quality. To address this challenge, we propose a novel 2D-3D hybrid colored point cloud upsampling framework (GaussianPU) based on 3D Gaussian Splatting (3DGS) for robotic perception. This approach leverages 3DGS to bridge 3D point clouds with their 2D rendered images in robot vision systems. A dual scale rendered image restoration network transforms sparse point cloud renderings into dense representations, which are then input into 3DGS along with precise robot camera poses and interpolated sparse point clouds to reconstruct dense 3D point clouds. We have made a series of enhancements to the vanilla 3DGS, enabling precise control over the number of points and significantly boosting the quality of the upsampled point cloud for robotic scene understanding. Our framework supports processing entire point clouds on a single consumer-grade GPU, such as the NVIDIA GeForce RTX 3090, eliminating the need for segmentation and thus producing high-quality, dense colored point clouds with millions of points for robot navigation and manipulation tasks. Extensive experimental results on generating million-level point cloud data validate the effectiveness of our method, substantially improving the quality of colored point clouds and demonstrating significant potential for applications involving large-scale point clouds in autonomous robotics and human-robot interaction scenarios. |
7 pages, 5 figures |
Accurate Forgetting for All-in-One Image Restoration Model | 2024-09-01 | ShowPrivacy protection has always been an ongoing topic, especially for AI. Currently, a low-cost scheme called Machine Unlearning forgets the private data remembered in the model. Specifically, given a private dataset and a trained neural network, we need to use e.g. pruning, fine-tuning, and gradient ascent to remove the influence of the private dataset on the neural network. Inspired by this, we try to use this concept to bridge the gap between the fields of image restoration and security, creating a new research idea. We propose the scene for the All-In-One model (a neural network that restores a wide range of degraded information), where a given dataset such as haze, or rain, is private and needs to be eliminated from the influence of it on the trained model. Notably, we find great challenges in this task to remove the influence of sensitive data while ensuring that the overall model performance remains robust, which is akin to directing a symphony orchestra without specific instruments while keeping the playing soothing. Here we explore a simple but effective approach: Instance-wise Unlearning through the use of adversarial examples and gradient ascent techniques. Our approach is a low-cost solution compared to the strategy of retraining the model from scratch, where the gradient ascent trick forgets the specified data and the performance of the adversarial sample maintenance model is robust. Through extensive experimentation on two popular unified image restoration models, we show that our approach effectively preserves knowledge of remaining data while unlearning a given degradation type. |
|
AWRaCLe: All-Weather Image Restoration using Visual In-Context Learning | 2024-08-30 | ShowAll-Weather Image Restoration (AWIR) under adverse weather conditions is a challenging task due to the presence of different types of degradations. Prior research in this domain relies on extensive training data but lacks the utilization of additional contextual information for restoration guidance. Consequently, the performance of existing methods is limited by the degradation cues that are learnt from individual training samples. Recent advancements in visual in-context learning have introduced generalist models that are capable of addressing multiple computer vision tasks simultaneously by using the information present in the provided context as a prior. In this paper, we propose All-Weather Image Restoration using Visual In-Context Learning (AWRaCLe), a novel approach for AWIR that innovatively utilizes degradation-specific visual context information to steer the image restoration process. To achieve this, AWRaCLe incorporates Degradation Context Extraction (DCE) and Context Fusion (CF) to seamlessly integrate degradation-specific features from the context into an image restoration network. The proposed DCE and CF blocks leverage CLIP features and incorporate attention mechanisms to adeptly learn and fuse contextual information. These blocks are specifically designed for visual in-context learning under all-weather conditions and are crucial for effective context utilization. Through extensive experiments, we demonstrate the effectiveness of AWRaCLe for all-weather restoration and show that our method advances the state-of-the-art in AWIR. |
|
Efficient Image Restoration through Low-Rank Adaptation and Stable Diffusion XL | 2024-08-30 | ShowIn this study, we propose an enhanced image restoration model, SUPIR, based on the integration of two low-rank adaptive (LoRA) modules with the Stable Diffusion XL (SDXL) framework. Our method leverages the advantages of LoRA to fine-tune SDXL models, thereby significantly improving image restoration quality and efficiency. We collect 2600 high-quality real-world images, each with detailed descriptive text, for training the model. The proposed method is evaluated on standard benchmarks and achieves excellent performance, demonstrated by higher peak signal-to-noise ratio (PSNR), lower learned perceptual image patch similarity (LPIPS), and higher structural similarity index measurement (SSIM) scores. These results underscore the effectiveness of combining LoRA with SDXL for advanced image restoration tasks, highlighting the potential of our approach in generating high-fidelity restored images. |
10 pages |
GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content | 2024-08-29 | ShowImage restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content. |
|
Enhanced Control for Diffusion Bridge in Image Restoration | 2024-08-29 | ShowImage restoration refers to the process of restoring a damaged low-quality image back to its corresponding high-quality image. Typically, we use convolutional neural networks to directly learn the mapping from low-quality images to high-quality images achieving image restoration. Recently, a special type of diffusion bridge model has achieved more advanced results in image restoration. It can transform the direct mapping from low-quality to high-quality images into a diffusion process, restoring low-quality images through a reverse process. However, the current diffusion bridge restoration models do not emphasize the idea of conditional control, which may affect performance. This paper introduces the ECDB model enhancing the control of the diffusion bridge with low-quality images as conditions. Moreover, in response to the characteristic of diffusion models having low denoising level at larger values of (\bm t ), we also propose a Conditional Fusion Schedule, which more effectively handles the conditional feature information of various modules. Experimental results prove that the ECDB model has achieved state-of-the-art results in many image restoration tasks, including deraining, inpainting and super-resolution. Code is avaliable at https://github.com/Hammour-steak/ECDB. |
|
Perceive-IR: Learning to Perceive Degradation Better for All-in-One Image Restoration | 2024-08-28 | ShowThe limitations of task-specific and general image restoration methods for specific degradation have prompted the development of all-in-one image restoration techniques. However, the diversity of patterns among multiple degradation, along with the significant uncertainties in mapping between degraded images of different severities and their corresponding undistorted versions, pose significant challenges to the all-in-one restoration tasks. To address these challenges, we propose Perceive-IR, an all-in-one image restorer designed to achieve fine-grained quality control that enables restored images to more closely resemble their undistorted counterparts, regardless of the type or severity of degradation. Specifically, Perceive-IR contains two stages: (1) prompt learning stage and (2) restoration stage. In the prompt learning stage, we leverage prompt learning to acquire a fine-grained quality perceiver capable of distinguishing three-tier quality levels by constraining the prompt-image similarity in the CLIP perception space. Subsequently, this quality perceiver and difficulty-adaptive perceptual loss are integrated as a quality-aware learning strategy to realize fine-grained quality control in restoration stage. For the restoration stage, a semantic guidance module (SGM) and compact feature extraction (CFE) are proposed to further promote the restoration process by utilizing the robust semantic information from the pre-trained large scale vision models and distinguishing degradation-specific features. Extensive experiments demonstrate that our Perceive-IR outperforms state-of-the-art methods in all-in-one image restoration tasks and exhibit superior generalization ability when dealing with unseen tasks. |
13 pages, 8 figures |
HAIR: Hypernetworks-based All-in-One Image Restoration | 2024-08-28 | ShowImage restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.} |
16 pages |
Multi-weather Cross-view Geo-localization Using Denoising Diffusion Models | 2024-08-28 | ShowCross-view geo-localization in GNSS-denied environments aims to determine an unknown location by matching drone-view images with the correct geo-tagged satellite-view images from a large gallery. Recent research shows that learning discriminative image representations under specific weather conditions can significantly enhance performance. However, the frequent occurrence of unseen extreme weather conditions hinders progress. This paper introduces MCGF, a Multi-weather Cross-view Geo-localization Framework designed to dynamically adapt to unseen weather conditions. MCGF establishes a joint optimization between image restoration and geo-localization using denoising diffusion models. For image restoration, MCGF incorporates a shared encoder and a lightweight restoration module to help the backbone eliminate weather-specific information. For geo-localization, MCGF uses EVA-02 as a backbone for feature extraction, with cross-entropy loss for training and cosine distance for testing. Extensive experiments on University160k-WX demonstrate that MCGF achieves competitive results for geo-localization in varying weather conditions. |
Accep...Accepted by ACM MM24 workshop |
A Preliminary Exploration Towards General Image Restoration | 2024-08-27 | ShowDespite the tremendous success of deep models in various individual image restoration tasks, there are at least two major technical challenges preventing these works from being applied to real-world usages: (1) the lack of generalization ability and (2) the complex and unknown degradations in real-world scenarios. Existing deep models, tailored for specific individual image restoration tasks, often fall short in effectively addressing these challenges. In this paper, we present a new problem called general image restoration (GIR) which aims to address these challenges within a unified model. GIR covers most individual image restoration tasks (\eg, image denoising, deblurring, deraining and super-resolution) and their combinations for general purposes. This paper proceeds to delineate the essential aspects of GIR, including problem definition and the overarching significance of generalization performance. Moreover, the establishment of new datasets and a thorough evaluation framework for GIR models is discussed. We conduct a comprehensive evaluation of existing approaches for tackling the GIR challenge, illuminating their strengths and pragmatic challenges. By analyzing these approaches, we not only underscore the effectiveness of GIR but also highlight the difficulties in its practical implementation. At last, we also try to understand and interpret these models' behaviors to inspire the future direction. Our work can open up new valuable research directions and contribute to the research of general vision. |
|
CODE: Confident Ordinary Differential Editing | 2024-08-22 | ShowConditioning image generation facilitates seamless editing and the creation of photorealistic images. However, conditioning on noisy or Out-of-Distribution (OoD) images poses significant challenges, particularly in balancing fidelity to the input and realism of the output. We introduce Confident Ordinary Differential Editing (CODE), a novel approach for image synthesis that effectively handles OoD guidance images. Utilizing a diffusion model as a generative prior, CODE enhances images through score-based updates along the probability-flow Ordinary Differential Equation (ODE) trajectory. This method requires no task-specific training, no handcrafted modules, and no assumptions regarding the corruptions affecting the conditioning image. Our method is compatible with any diffusion model. Positioned at the intersection of conditional image generation and blind image restoration, CODE operates in a fully blind manner, relying solely on a pre-trained generative model. Our method introduces an alternative approach to blind restoration: instead of targeting a specific ground truth image based on assumptions about the underlying corruption, CODE aims to increase the likelihood of the input image while maintaining fidelity. This results in the most probable in-distribution image around the input. Our contributions are twofold. First, CODE introduces a novel editing method based on ODE, providing enhanced control, realism, and fidelity compared to its SDE-based counterpart. Second, we introduce a confidence interval-based clipping method, which improves CODE's effectiveness by allowing it to disregard certain pixels or information, thus enhancing the restoration process in a blind manner. Experimental results demonstrate CODE's effectiveness over existing methods, particularly in scenarios involving severe degradation or OoD inputs. |
|
Unfolded proximal neural networks for robust image Gaussian denoising | 2024-08-21 | ShowA common approach to solve inverse imaging problems relies on finding a maximum a posteriori (MAP) estimate of the original unknown image, by solving a minimization problem. In thiscontext, iterative proximal algorithms are widely used, enabling to handle non-smooth functions and linear operators. Recently, these algorithms have been paired with deep learning strategies, to further improve the estimate quality. In particular, proximal neural networks (PNNs) have been introduced, obtained by unrolling a proximal algorithm as for finding a MAP estimate, but over a fixed number of iterations, with learned linear operators and parameters. As PNNs are based on optimization theory, they are very flexible, and can be adapted to any image restoration task, as soon as a proximal algorithm can solve it. They further have much lighter architectures than traditional networks. In this article we propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms. We further show that accelerated inertial versions of these algorithms enable skip connections in the associated NN layers. We propose different learning strategies for our PNN framework, and investigate their robustness (Lipschitz property) and denoising efficiency. Finally, we assess the robustness of our PNNs when plugged in a forward-backward algorithm for an image deblurring problem. |
|
Taming Generative Diffusion for Universal Blind Image Restoration | 2024-08-21 | ShowDiffusion models have been widely utilized for image restoration. However, previous blind image restoration methods still need to assume the type of degradation model while leaving the parameters to be optimized, limiting their real-world applications. Therefore, we aim to tame generative diffusion prior for universal blind image restoration dubbed BIR-D, which utilizes an optimizable convolutional kernel to simulate the degradation model and dynamically update the parameters of the kernel in the diffusion steps, enabling it to achieve blind image restoration results even in various complex situations. Besides, based on mathematical reasoning, we have provided an empirical formula for the chosen of adaptive guidance scale, eliminating the need for a grid search for the optimal parameter. Experimentally, Our BIR-D has demonstrated superior practicality and versatility than off-the-shelf unsupervised methods across various tasks both on real-world and synthetic datasets, qualitatively and quantitatively. BIR-D is able to fulfill multi-guidance blind image restoration. Moreover, BIR-D can also restore images that undergo multiple and complicated degradations, demonstrating the practical applications. |
14 pa...14 pages, 9 figures, 8 tables |
DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency | 2024-08-19 | ShowDiffusion models have established new state of the art in a multitude of computer vision tasks, including image restoration. Diffusion-based inverse problem solvers generate reconstructions of exceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degradation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics. |
30 pa...30 pages, 15 figures, published at the 41st International Conference on Machine Learning, Vienna, Austria, 2024 |
Multi-Scale Representation Learning for Image Restoration with State-Space Model | 2024-08-19 | ShowImage restoration endeavors to reconstruct a high-quality, detail-rich image from a degraded counterpart, which is a pivotal process in photography and various computer vision systems. In real-world scenarios, different types of degradation can cause the loss of image details at various scales and degrade image contrast. Existing methods predominantly rely on CNN and Transformer to capture multi-scale representations. However, these methods are often limited by the high computational complexity of Transformers and the constrained receptive field of CNN, which hinder them from achieving superior performance and efficiency in image restoration. To address these challenges, we propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration that enhances the capacity for multi-scale representation learning through our proposed global and regional SSM modules. Additionally, an Adaptive Gradient Block (AGB) and a Residual Fourier Block (RFB) are proposed to improve the network's detail extraction capabilities by capturing gradients in various directions and facilitating learning details in the frequency domain. Extensive experiments on nine public benchmarks across four classic image restoration tasks, image deraining, dehazing, denoising, and low-light enhancement, demonstrate that our proposed method achieves new state-of-the-art performance while maintaining low computational complexity. The source code will be publicly available. |
|
Harnessing Multi-resolution and Multi-scale Attention for Underwater Image Restoration | 2024-08-19 | ShowUnderwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration (UIR) methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel |
|
Re-boosting Self-Collaboration Parallel Prompt GAN for Unsupervised Image Restoration | 2024-08-17 | ShowUnsupervised restoration approaches based on generative adversarial networks (GANs) offer a promising solution without requiring paired datasets. Yet, these GAN-based approaches struggle to surpass the performance of conventional unsupervised GAN-based frameworks without significantly modifying model structures or increasing the computational complexity. To address these issues, we propose a self-collaboration (SC) strategy for existing restoration models. This strategy utilizes information from the previous stage as feedback to guide subsequent stages, achieving significant performance improvement without increasing the framework's inference complexity. The SC strategy comprises a prompt learning (PL) module and a restorer ( |
This ...This paper is an extended and revised version of our previous work "Unsupervised Image Denoising in Real-World Scenarios via Self-Collaboration Parallel Generative Adversarial Branches"(https://openaccess.thecvf.com/content/ICCV2023/papers/Lin_Unsupervised_Image_Denoising_in_Real-World_Scenarios_via_Self-Collaboration_Parallel_Generative_ICCV_2023_paper.pdf) |
Multi-task Image Restoration Guided By Robust DINO Features | 2024-08-16 | ShowMulti-task image restoration has gained significant interest due to its inherent versatility and efficiency compared to its single-task counterpart. However, performance decline is observed with an increase in the number of tasks, primarily attributed to the restoration model's challenge in handling different tasks with distinct natures at the same time. Thus, a perspective emerged aiming to explore the degradation-insensitive semantic commonalities among different degradation tasks. In this paper, we observe that the features of DINOv2 can effectively model semantic information and are independent of degradation factors. Motivated by this observation, we propose \mbox{\textbf{DINO-IR}}, a multi-task image restoration approach leveraging robust features extracted from DINOv2 to solve multi-task image restoration simultaneously. We first propose a pixel-semantic fusion (PSF) module to dynamically fuse DINOV2's shallow features containing pixel-level information and deep features containing degradation-independent semantic information. To guide the restoration model with the features of DINOv2, we develop a DINO-Restore adaption and fusion module to adjust the channel of fused features from PSF and then integrate them with the features from the restoration model. By formulating these modules into a unified deep model, we propose a DINO perception contrastive loss to constrain the model training. Extensive experimental results demonstrate that our DINO-IR performs favorably against existing multi-task image restoration approaches in various tasks by a large margin. The source codes and trained models will be made available. |
|
Unsupervised Variational Translator for Bridging Image Restoration and High-Level Vision Tasks | 2024-08-15 | ShowRecent research tries to extend image restoration capabilities from human perception to machine perception, thereby enhancing the performance of high-level vision tasks in degraded environments. These methods, primarily based on supervised learning, typically involve the retraining of restoration networks or high-level vision networks. However, collecting paired data in real-world scenarios and retraining large-scale models are challenge. To this end, we propose an unsupervised learning method called \textbf{Va}riational \textbf{T}ranslator (VaT), which does not require retraining existing restoration and high-level vision networks. Instead, it establishes a lightweight network that serves as an intermediate bridge between them. By variational inference, VaT approximates the joint distribution of restoration output and high-level vision input, dividing the optimization objective into preserving content and maximizing marginal likelihood associated with high-level vision tasks. By cleverly leveraging self-training paradigms, VaT achieves the above optimization objective without requiring labels. As a result, the translated images maintain a close resemblance to their original content while also demonstrating exceptional performance on high-level vision tasks. Extensive experiments in dehazing and low-light enhancement for detection and classification show the superiority of our method over other state-of-the-art unsupervised counterparts, even significantly surpassing supervised methods in some complex real-world scenarios. |
|
Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method | 2024-08-13 | ShowAll-in-one image restoration tasks are becoming increasingly important, especially for ultra-high-definition (UHD) images. Existing all-in-one UHD image restoration methods usually boost the model's performance by introducing prompt or customized dynamized networks for different degradation types. For the inference stage, it might be friendly, but in the training stage, since the model encounters multiple degraded images of different quality in an epoch, these cluttered learning objectives might be information pollution for the model. To address this problem, we propose a new training paradigm for general image restoration models, which we name \textbf{Review Learning}, which enables image restoration models to be capable enough to handle multiple types of degradation without prior knowledge and prompts. This approach begins with sequential training of an image restoration model on several degraded datasets, combined with a review mechanism that enhances the image restoration model's memory for several previous classes of degraded datasets. In addition, we design a lightweight all-purpose image restoration network that can efficiently reason about degraded images with 4K ( |
|
Wavelet based inpainting detection | 2024-08-12 | ShowWith the advancement in image editing tools, manipulating digital images has become alarmingly easy. Inpainting, which is used to remove objects or fill in parts of an image, serves as a powerful tool for both image restoration and forgery. This paper introduces a novel approach for detecting image inpainting forgeries by combining DT-CWT with Hierarchical Feature segmentation and with noise inconsistency analysis. The DT-CWT offers several advantages for this task, including inherent shift-invariance, which makes it robust to minor manipulations during the inpainting process, and directional selectivity, which helps capture subtle artifacts introduced by inpainting in specific frequency bands and orientations. By first applying color image segmentation and then analyzing for each segment, noise inconsistency obtained via DT-CW we can identify patterns indicative of inpainting forgeries. The proposed method is evaluated on a benchmark dataset created for this purpose and is compared with existing forgery detection techniques. Our approach demonstrates superior results compared with SOTA in detecting inpainted images. |
|
Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration | 2024-08-12 | ShowWe propose an image restoration algorithm that can control the perceptual quality and/or the mean square error (MSE) of any pre-trained model, trading one over the other at test time. Our algorithm is few-shot: Given about a dozen images restored by the model, it can significantly improve the perceptual quality and/or the MSE of the model for newly restored images without further training. Our approach is motivated by a recent theoretical result that links between the minimum MSE (MMSE) predictor and the predictor that minimizes the MSE under a perfect perceptual quality constraint. Specifically, it has been shown that the latter can be obtained by optimally transporting the output of the former, such that its distribution matches the source data. Thus, to improve the perceptual quality of a predictor that was originally trained to minimize MSE, we approximate the optimal transport by a linear transformation in the latent space of a variational auto-encoder, which we compute in closed-form using empirical means and covariances. Going beyond the theory, we find that applying the same procedure on models that were initially trained to achieve high perceptual quality, typically improves their perceptual quality even further. And by interpolating the results with the original output of the model, we can improve their MSE on the expense of perceptual quality. We illustrate our method on a variety of degradations applied to general content images of arbitrary dimensions. |
|
Greedy randomized block Kaczmarz method for matrix equation AXB=C and its applications in color image restoration | 2024-08-10 | ShowIn view of the advantages of simplicity and effectiveness of the Kaczmarz method, which was originally employed to solve the large-scale system of linear equations |
|
Physical prior guided cooperative learning framework for joint turbulence degradation estimation and infrared video restoration | 2024-08-08 | ShowInfrared imaging and turbulence strength measurements are in widespread demand in many fields. This paper introduces a Physical Prior Guided Cooperative Learning (P2GCL) framework to jointly enhance atmospheric turbulence strength estimation and infrared image restoration. P2GCL involves a cyclic collaboration between two models, i.e., a TMNet measures turbulence strength and outputs the refractive index structure constant (Cn2) as a physical prior, a TRNet conducts infrared image sequence restoration based on Cn2 and feeds the restored images back to the TMNet to boost the measurement accuracy. A novel Cn2-guided frequency loss function and a physical constraint loss are introduced to align the training process with physical theories. Experiments demonstrate P2GCL achieves the best performance for both turbulence strength estimation (improving Cn2 MAE by 0.0156, enhancing R2 by 0.1065) and image restoration (enhancing PSNR by 0.2775 dB), validating the significant impact of physical prior guided cooperative learning. |
21 |
MultiColor: Image Colorization by Learning from Multiple Color Spaces | 2024-08-08 | ShowDeep networks have shown impressive performance in the image restoration tasks, such as image colorization. However, we find that previous approaches rely on the digital representation from single color model with a specific mapping function, a.k.a., color space, during the colorization pipeline. In this paper, we first investigate the modeling of different color spaces, and find each of them exhibiting distinctive characteristics with unique distribution of colors. The complementarity among multiple color spaces leads to benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically colorize grayscale images that combines clues from multiple color spaces. Specifically, we employ a set of dedicated colorization modules for individual color space. Within each module, a transformer decoder is first employed to refine color query embeddings and then a color mapper produces color channel prediction using the embeddings and semantic features. With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images. We conduct extensive experiments on real-world datasets, and the results demonstrate superior performance over the state-of-the-arts. |
|
Diffusion Posterior Proximal Sampling for Image Restoration | 2024-08-06 | ShowDiffusion models have demonstrated remarkable efficacy in generating high-quality samples. Existing diffusion-based image restoration algorithms exploit pre-trained diffusion models to leverage data priors, yet they still preserve elements inherited from the unconditional generation paradigm. These strategies initiate the denoising process with pure white noise and incorporate random noise at each generative step, leading to over-smoothed results. In this paper, we present a refined paradigm for diffusion-based image restoration. Specifically, we opt for a sample consistent with the measurement identity at each generative step, exploiting the sampling selection as an avenue for output stability and enhancement. The number of candidate samples used for selection is adaptively determined based on the signal-to-noise ratio of the timestep. Additionally, we start the restoration process with an initialization combined with the measurement signal, providing supplementary information to better align the generative process. Extensive experimental results and analyses validate that our proposed method significantly enhances image restoration performance while consuming negligible additional computational resources. |
ACM M...ACM Multimedia 2024 Oral |
Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction | 2024-08-03 | ShowThe correction of exposure-related issues is a pivotal component in enhancing the quality of images, offering substantial implications for various computer vision tasks. Historically, most methodologies have predominantly utilized spatial domain recovery, offering limited consideration to the potentialities of the frequency domain. Additionally, there has been a lack of a unified perspective towards low-light enhancement, exposure correction, and multi-exposure fusion, complicating and impeding the optimization of image processing. In response to these challenges, this paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks. Our method introduces Holistic Frequency Attention and Dynamic Frequency Feed-Forward Network, which replace conventional correlation computation in the spatial-domain. They form a foundational building block that facilitates a U-shaped Holistic Dynamic Frequency Transformer as a filter to extract global information and dynamically select important frequency bands for image restoration. Complementing this, we employ a Laplacian pyramid to decompose images into distinct frequency bands, followed by multiple restorers, each tuned to recover specific frequency-band information. The pyramid fusion allows a more detailed and nuanced image restoration process. Ultimately, our structure unifies the three tasks of low-light enhancement, exposure correction, and multi-exposure fusion, enabling comprehensive treatment of all classical exposure errors. Benchmarking on mainstream datasets for these tasks, our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction. |
|
Contribution-based Low-Rank Adaptation with Pre-training Model for Real Image Restoration | 2024-08-02 | ShowRecently, pre-trained model and efficient parameter tuning have achieved remarkable success in natural language processing and high-level computer vision with the aid of masked modeling and prompt tuning. In low-level computer vision, however, there have been limited investigations on pre-trained models and even efficient fine-tuning strategy has not yet been explored despite its importance and benefit in various real-world tasks such as alleviating memory inflation issue when integrating new tasks on AI edge devices. Here, we propose a novel efficient parameter tuning approach dubbed contribution-based low-rank adaptation (CoLoRA) for multiple image restorations along with effective pre-training method with random order degradations (PROD). Unlike prior arts that tune all network parameters, our CoLoRA effectively fine-tunes small amount of parameters by leveraging LoRA (low-rank adaptation) for each new vision task with our contribution-based method to adaptively determine layer by layer capacity for that task to yield comparable performance to full tuning. Furthermore, our PROD strategy allows to extend the capability of pre-trained models with improved performance as well as robustness to bridge synthetic pre-training and real-world fine-tuning. Our CoLoRA with PROD has demonstrated its superior performance in various image restoration tasks across diverse degradation types on both synthetic and real-world datasets for known and novel tasks. |
33 pa...33 pages, 15 figures, for homepage see this url : https://janeyeon.github.io/colora/ |
Osmosis: RGBD Diffusion Prior for Underwater Image Restoration | 2024-08-01 | ShowUnderwater image restoration is a challenging task because of water effects that increase dramatically with distance. This is worsened by lack of ground truth data of clean scenes without water. Diffusion priors have emerged as strong image restoration priors. However, they are often trained with a dataset of the desired restored output, which is not available in our case. We also observe that using only color data is insufficient, and therefore augment the prior with a depth channel. We train an unconditional diffusion model prior on the joint space of color and depth, using standard RGBD datasets of natural outdoor scenes in air. Using this prior together with a novel guidance method based on the underwater image formation model, we generate posterior samples of clean images, removing the water effects. Even though our prior did not see any underwater images during training, our method outperforms state-of-the-art baselines for image restoration on very challenging scenes. Our code, models and data are available on the project website. |
ECCV ...ECCV 2024. Project page with results and code: https://osmosis-diffusion.github.io/ |
A Prior Embedding-Driven Architecture for Long Distance Blind Iris Recognition | 2024-08-01 | ShowBlind iris images, which result from unknown degradation during the process of iris recognition at long distances, often lead to decreased iris recognition rates. Currently, little existing literature offers a solution to this problem. In response, we propose a prior embedding-driven architecture for long distance blind iris recognition. We first proposed a blind iris image restoration network called Iris-PPRGAN. To effectively restore the texture of the blind iris, Iris-PPRGAN includes a Generative Adversarial Network (GAN) used as a Prior Decoder, and a DNN used as the encoder. To extract iris features more efficiently, we then proposed a robust iris classifier by modifying the bottleneck module of InsightFace, which called Insight-Iris. A low-quality blind iris image is first restored by Iris-PPRGAN, then the restored iris image undergoes recognition via Insight-Iris. Experimental results on the public CASIA-Iris-distance dataset demonstrate that our proposed method significantly superior results to state-of-the-art blind iris restoration methods both quantitatively and qualitatively, Specifically, the recognition rate for long-distance blind iris images reaches 90% after processing with our methods, representing an improvement of approximately ten percentage points compared to images without restoration. |
|
Restore-RWKV: Efficient and Effective Medical Image Restoration with RWKV | 2024-07-31 | ShowTransformers have revolutionized medical image restoration, but the quadratic complexity still poses limitations for their application to high-resolution medical images. The recent advent of RWKV in the NLP field has attracted much attention as it can process long sequences efficiently. To leverage its advanced design, we propose Restore-RWKV, the first RWKV-based model for medical image restoration. Since the original RWKV model is designed for 1D sequences, we make two necessary modifications for modeling spatial relations in 2D images. First, we present a recurrent WKV (Re-WKV) attention mechanism that captures global dependencies with linear computational complexity. Re-WKV incorporates bidirectional attention as basic for a global receptive field and recurrent attention to effectively model 2D dependencies from various scan directions. Second, we develop an omnidirectional token shift (Omni-Shift) layer that enhances local dependencies by shifting tokens from all directions and across a wide context range. These adaptations make the proposed Restore-RWKV an efficient and effective model for medical image restoration. Extensive experiments demonstrate that Restore-RWKV achieves superior performance across various medical image restoration tasks, including MRI image super-resolution, CT image denoising, PET image synthesis, and all-in-one medical image restoration. Code is available at: \href{https://github.com/Yaziwel/Restore-RWKV.git}{https://github.com/Yaziwel/Restore-RWKV}. |
This ...This paper introduces the first RWKV-based model for image restoration |
UniProcessor: A Text-induced Unified Low-level Image Processor | 2024-07-30 | ShowImage processing, including image restoration, image enhancement, etc., involves generating a high-quality clean image from a degraded input. Deep learning-based methods have shown superior performance for various image processing tasks in terms of single-task conditions. However, they require to train separate models for different degradations and levels, which limits the generalization abilities of these models and restricts their applications in real-world. In this paper, we propose a text-induced unified image processor for low-level vision tasks, termed UniProcessor, which can effectively process various degradation types and levels, and support multimodal control. Specifically, our UniProcessor encodes degradation-specific information with the subject prompt and process degradations with the manipulation prompt. These context control features are injected into the UniProcessor backbone via cross-attention to control the processing procedure. For automatic subject-prompt generation, we further build a vision-language model for general-purpose low-level degradation perception via instruction tuning techniques. Our UniProcessor covers 30 degradation types, and extensive experiments demonstrate that our UniProcessor can well process these degradations without additional training or tuning and outperforms other competing methods. Moreover, with the help of degradation-aware context control, our UniProcessor first shows the ability to individually handle a single distortion in an image with multiple degradations. |
|
Multi-Expert Adaptive Selection: Task-Balancing for All-in-One Image Restoration | 2024-07-27 | ShowThe use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration. |
|
Dilated Strip Attention Network for Image Restoration | 2024-07-26 | ShowImage restoration is a long-standing task that seeks to recover the latent sharp image from its deteriorated counterpart. Due to the robust capacity of self-attention to capture long-range dependencies, transformer-based methods or some attention-based convolutional neural networks have demonstrated promising results on many image restoration tasks in recent years. However, existing attention modules encounters limited receptive fields or abundant parameters. In order to integrate contextual information more effectively and efficiently, in this paper, we propose a dilated strip attention network (DSAN) for image restoration. Specifically, to gather more contextual information for each pixel from its neighboring pixels in the same row or column, a dilated strip attention (DSA) mechanism is elaborately proposed. By employing the DSA operation horizontally and vertically, each location can harvest the contextual information from a much wider region. In addition, we utilize multi-scale receptive fields across different feature groups in DSA to improve representation learning. Extensive experiments show that our DSAN outperforms state-of-the-art algorithms on several image restoration tasks. |
|
RestoreAgent: Autonomous Image Restoration Agent via Multimodal Large Language Models | 2024-07-25 | ShowNatural images captured by mobile devices often suffer from multiple types of degradation, such as noise, blur, and low light. Traditional image restoration methods require manual selection of specific tasks, algorithms, and execution sequences, which is time-consuming and may yield suboptimal results. All-in-one models, though capable of handling multiple tasks, typically support only a limited range and often produce overly smooth, low-fidelity outcomes due to their broad data distribution fitting. To address these challenges, we first define a new pipeline for restoring images with multiple degradations, and then introduce RestoreAgent, an intelligent image restoration system leveraging multimodal large language models. RestoreAgent autonomously assesses the type and extent of degradation in input images and performs restoration through (1) determining the appropriate restoration tasks, (2) optimizing the task sequence, (3) selecting the most suitable models, and (4) executing the restoration. Experimental results demonstrate the superior performance of RestoreAgent in handling complex degradation, surpassing human experts. Furthermore, the system modular design facilitates the fast integration of new tasks and models, enhancing its flexibility and scalability for various applications. |
|
Restoring Images in Adverse Weather Conditions via Histogram Transformer | 2024-07-25 | ShowTransformer-based image restoration methods in adverse weather have achieved significant progress. Most of them use self-attention along the channel dimension or within spatially fixed-range blocks to reduce computational load. However, such a compromise results in limitations in capturing long-range spatial features. Inspired by the observation that the weather-induced degradation factors mainly cause similar occlusion and brightness, in this work, we propose an efficient Histogram Transformer (Histoformer) for restoring images affected by adverse weather. It is powered by a mechanism dubbed histogram self-attention, which sorts and segments spatial features into intensity-based bins. Self-attention is then applied across bins or within each bin to selectively focus on spatial features of dynamic range and process similar degraded pixels of the long range together. To boost histogram self-attention, we present a dynamic-range convolution enabling conventional convolution to conduct operation over similar pixels rather than neighbor pixels. We also observe that the common pixel-wise losses neglect linear association and correlation between output and ground-truth. Thus, we propose to leverage the Pearson correlation coefficient as a loss function to enforce the recovered pixels following the identical order as ground-truth. Extensive experiments demonstrate the efficacy and superiority of our proposed method. We have released the codes in Github. |
19 pa...19 pages, 7 figures, 10MB |
CLII: Visual-Text Inpainting via Cross-Modal Predictive Interaction | 2024-07-23 | ShowImage inpainting aims to fill missing pixels in damaged images and has achieved significant progress with cut-edging learning techniques. Nevertheless, state-of-the-art inpainting methods are mainly designed for nature images and cannot correctly recover text within scene text images, and training existing models on the scene text images cannot fix the issues. In this work, we identify the visual-text inpainting task to achieve high-quality scene text image restoration and text completion: Given a scene text image with unknown missing regions and the corresponding text with unknown missing characters, we aim to complete the missing information in both images and text by leveraging their complementary information. Intuitively, the input text, even if damaged, contains language priors of the contents within the images and can guide the image inpainting. Meanwhile, the scene text image includes the appearance cues of the characters that could benefit text recovery. To this end, we design the cross-modal predictive interaction (CLII) model containing two branches, i.e., ImgBranch and TxtBranch, for scene text inpainting and text completion, respectively while leveraging their complementary effectively. Moreover, we propose to embed our model into the SOTA scene text spotting method and significantly enhance its robustness against missing pixels, which demonstrates the practicality of the newly developed task. To validate the effectiveness of our method, we construct three real datasets based on existing text-related datasets, containing 1838 images and covering three scenarios with curved, incidental, and styled texts, and conduct extensive experiments to show that our method outperforms baselines significantly. |
|
Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems | 2024-07-23 | ShowRecent studies on inverse problems have proposed posterior samplers that leverage the pre-trained diffusion models as powerful priors. These attempts have paved the way for using diffusion models in a wide range of inverse problems. However, the existing methods entail computationally demanding iterative sampling procedures and optimize a separate solution for each measurement, which leads to limited scalability and lack of generalization capability across unseen samples. To address these limitations, we propose a novel approach, Diffusion prior-based Amortized Variational Inference (DAVI) that solves inverse problems with a diffusion prior from an amortized variational inference perspective. Specifically, instead of separate measurement-wise optimization, our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements. Extensive experiments on image restoration tasks, e.g., Gaussian deblur, 4$\times$ super-resolution, and box inpainting with two benchmark datasets, demonstrate our approach's superior performance over strong baselines. Code is available at https://github.com/mlvlab/DAVI. |
ECCV ...ECCV 2024; 41 pages, 19 figures |
HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration | 2024-07-21 | ShowPreconditioned Proximal Point (PPP) algorithms provide a unified framework for splitting methods in image restoration. Recent advancements with RED (Regularization by Denoising) and PnP (Plug-and-Play) priors have achieved state-of-the-art performance in this domain, emphasizing the need for a meaningful particular solution. However, degenerate PPP algorithms typically exhibit weak convergence in infinite-dimensional Hilbert space, leading to uncertain solutions. To address this issue, we propose the Halpern-type Preconditioned Proximal Point (HPPP) algorithm, which leverages the strong convergence properties of Halpern iteration to achieve a particular solution. Based on the implicit regularization defined by gradient RED, we further introduce the Gradient REgularization by Denoising via HPPP called GraRED-HP3 algorithm. The HPPP algorithm is shown to have the regularity converging to a particular solution by a toy example. Additionally, experiments in image deblurring and inpainting validate the effectiveness of GraRED-HP3, showing it surpasses classical methods such as Chambolle-Pock (CP), PPP, RED, and RED-PRO. |
|
DiffLoss: unleashing diffusion model as constraint for training image restoration network | 2024-07-21 | ShowImage restoration aims to enhance low quality images, producing high quality images that exhibit natural visual characteristics and fine semantic attributes. Recently, the diffusion model has emerged as a powerful technique for image generation, and it has been explicitly employed as a backbone in image restoration tasks, yielding excellent results. However, it suffers from the drawbacks of slow inference speed and large model parameters due to its intrinsic characteristics. In this paper, we introduce a new perspective that implicitly leverages the diffusion model to assist the training of image restoration network, called DiffLoss, which drives the restoration results to be optimized for naturalness and semantic-aware visual effect. To achieve this, we utilize the mode coverage capability of the diffusion model to approximate the distribution of natural images and explore its ability to capture image semantic attributes. On the one hand, we extract intermediate noise to leverage its modeling capability of the distribution of natural images, which serves as a naturalness-oriented optimization space. On the other hand, we utilize the bottleneck features of diffusion model to harness its semantic attributes serving as a constraint on semantic level. By combining these two designs, the overall loss function is able to improve the perceptual quality of image restoration, resulting in visually pleasing and semantically enhanced outcomes. To validate the effectiveness of our method, we conduct experiments on various common image restoration tasks and benchmarks. Extensive experimental results demonstrate that our approach enhances the visual quality and semantic perception of the restoration network. |
|
Deep Learning CT Image Restoration using System Blur and Noise Models | 2024-07-20 | ShowThe restoration of images affected by blur and noise has been widely studied and has broad potential for applications including in medical imaging modalities like computed tomography (CT). Although the blur and noise in CT images can be attributed to a variety of system factors, these image properties can often be modeled and predicted accurately and used in classical restoration approaches for deconvolution and denoising. In classical approaches, simultaneous deconvolution and denoising can be challenging and often represent competing goals. Recently, deep learning approaches have demonstrated the potential to enhance image quality beyond classic limits; however, most deep learning models attempt a blind restoration problem and base their restoration on image inputs alone without direct knowledge of the image noise and blur properties. In this work, we present a method that leverages both degraded image inputs and a characterization of the system blur and noise to combine modeling and deep learning approaches. Different methods to integrate these auxiliary inputs are presented. Namely, an input-variant and a weight-variant approach wherein the auxiliary inputs are incorporated as a parameter vector before and after the convolutional block, respectively, allowing easy integration into any CNN architecture. The proposed model shows superior performance compared to baseline models lacking auxiliary inputs. Evaluations are based on the average Peak Signal-to-Noise Ratio (PSNR), selected examples of good and poor performance for varying approaches, and an input space analysis to assess the effect of different noise and blur on performance. Results demonstrate the efficacy of providing a deep learning model with auxiliary inputs, representing system blur and noise characteristics, to enhance the performance of the model in image restoration tasks. |
|
Dual High-Order Total Variation Model for Underwater Image Restoration | 2024-07-20 | ShowUnderwater images are typically characterized by color cast, haze, blurring, and uneven illumination due to the selective absorption and scattering when light propagates through the water, which limits their practical applications. Underwater image enhancement and restoration (UIER) is one crucial mode to improve the visual quality of underwater images. However, most existing UIER methods concentrate on enhancing contrast and dehazing, rarely pay attention to the local illumination differences within the image caused by illumination variations, thus introducing some undesirable artifacts and unnatural color. To address this issue, an effective variational framework is proposed based on an extended underwater image formation model (UIFM). Technically, dual high-order regularizations are successfully integrated into the variational model to acquire smoothed local ambient illuminance and structure-revealed reflectance in a unified manner. In our proposed framework, the weight factors-based color compensation is combined with the color balance to compensate for the attenuated color channels and remove the color cast. In particular, the local ambient illuminance with strong robustness is acquired by performing the local patch brightest pixel estimation and an improved gamma correction. Additionally, we design an iterative optimization algorithm relying on the alternating direction method of multipliers (ADMM) to accelerate the solution of the proposed variational model. Considerable experiments on three real-world underwater image datasets demonstrate that the proposed method outperforms several state-of-the-art methods with regard to visual quality and quantitative assessments. Moreover, the proposed method can also be extended to outdoor image dehazing, low-light image enhancement, and some high-level vision tasks. The code is available at https://github.com/Hou-Guojia/UDHTV. |
13 pages, 10 figures |
Any Image Restoration with Efficient Automatic Degradation Adaptation | 2024-07-18 | ShowWith the emergence of mobile devices, there is a growing demand for an efficient model to restore any degraded image for better perceptual quality. However, existing models often require specific learning modules tailored for each degradation, resulting in complex architectures and high computation costs. Different from previous work, in this paper, we propose a unified manner to achieve joint embedding by leveraging the inherent similarities across various degradations for efficient and comprehensive restoration. Specifically, we first dig into the sub-latent space of each input to analyze the key components and reweight their contributions in a gated manner. The intrinsic awareness is further integrated with contextualized attention in an X-shaped scheme, maximizing local-global intertwining. Extensive comparison on benchmarking all-in-one restoration setting validates our efficiency and effectiveness, i.e., our network sets new SOTA records while reducing model complexity by approximately -82% in trainable parameters and -85% in FLOPs. Our code will be made publicly available at:https://github.com/Amazingren/AnyIR. |
Effic...Efficient Any Image Restoration |
Energy-Calibrated VAE with Test Time Free Lunch | 2024-07-18 | ShowIn this paper, we propose a novel generative model that utilizes a conditional Energy-Based Model (EBM) for enhancing Variational Autoencoder (VAE), termed Energy-Calibrated VAE (EC-VAE). Specifically, VAEs often suffer from blurry generated samples due to the lack of a tailored training on the samples generated in the generative direction. On the other hand, EBMs can generate high-quality samples but require expensive Markov Chain Monte Carlo (MCMC) sampling. To address these issues, we introduce a conditional EBM for calibrating the generative direction of VAE during training, without requiring it for the generation at test time. In particular, we train EC-VAE upon both the input data and the calibrated samples with adaptive weight to enhance efficacy while avoiding MCMC sampling at test time. Furthermore, we extend the calibration idea of EC-VAE to variational learning and normalizing flows, and apply EC-VAE to an additional application of zero-shot image restoration via neural transport prior and range-null theory. We evaluate the proposed method with two applications, including image generation and zero-shot image restoration, and the experimental results show that our method achieves competitive performance over single-step non-adversarial generation. Our code is available at https://github.com/DJ-LYH/EC-VAE. |
ECCV ...ECCV 2024. Code is available at https://github.com/DJ-LYH/EC-VAE |
Training-Free Large Model Priors for Multiple-in-One Image Restoration | 2024-07-18 | ShowImage restoration aims to reconstruct the latent clear images from their degraded versions. Despite the notable achievement, existing methods predominantly focus on handling specific degradation types and thus require specialized models, impeding real-world applications in dynamic degradation scenarios. To address this issue, we propose Large Model Driven Image Restoration framework (LMDIR), a novel multiple-in-one image restoration paradigm that leverages the generic priors from large multi-modal language models (MMLMs) and the pretrained diffusion models. In detail, LMDIR integrates three key prior knowledges: 1) global degradation knowledge from MMLMs, 2) scene-aware contextual descriptions generated by MMLMs, and 3) fine-grained high-quality reference images synthesized by diffusion models guided by MMLM descriptions. Standing on above priors, our architecture comprises a query-based prompt encoder, degradation-aware transformer block injecting global degradation knowledge, content-aware transformer block incorporating scene description, and reference-based transformer block incorporating fine-grained image priors. This design facilitates single-stage training paradigm to address various degradations while supporting both automatic and user-guided restoration. Extensive experiments demonstrate that our designed method outperforms state-of-the-art competitors on multiple evaluation benchmarks. |
|
GRIDS: Grouped Multiple-Degradation Restoration with Image Degradation Similarity | 2024-07-17 | ShowTraditional single-task image restoration methods excel in handling specific degradation types but struggle with multiple degradations. To address this limitation, we propose Grouped Restoration with Image Degradation Similarity (GRIDS), a novel approach that harmonizes the competing objectives inherent in multiple-degradation restoration. We first introduce a quantitative method for assessing relationships between image degradations using statistical modeling of deep degradation representations. This analysis facilitates the strategic grouping of similar tasks, enhancing both the efficiency and effectiveness of the restoration process. Based on the degradation similarity, GRIDS divides restoration tasks into one of the optimal groups, where tasks within the same group are highly correlated. For instance, GRIDS effectively groups 11 degradation types into 4 cohesive groups. Trained models within each group show significant improvements, with an average improvement of 0.09dB over single-task upper bound models and 2.24dB over the mix-training baseline model. GRIDS incorporates an adaptive model selection mechanism for inference, automatically selecting the appropriate grouped-training model based on the input degradation. This mechanism is particularly useful for real-world scenarios with unknown degradations as it does not rely on explicit degradation classification modules. Furthermore, our method can predict model generalization ability without the need for network inference, providing valuable insights for practitioners. |
Accepted by ECCV2024 |
A Comparative Study of Image Restoration Networks for General Backbone Network Design | 2024-07-16 | ShowDespite the significant progress made by deep models in various image restoration tasks, existing image restoration networks still face challenges in terms of task generality. An intuitive manifestation is that networks which excel in certain tasks often fail to deliver satisfactory results in others. To illustrate this point, we select five representative networks and conduct a comparative study on five classic image restoration tasks. First, we provide a detailed explanation of the characteristics of different image restoration tasks and backbone networks. Following this, we present the benchmark results and analyze the reasons behind the performance disparity of different models across various tasks. Drawing from this comparative study, we propose that a general image restoration backbone network needs to meet the functional requirements of diverse tasks. Based on this principle, we design a new general image restoration backbone network, X-Restormer. Extensive experiments demonstrate that X-Restormer possesses good task generality and achieves state-of-the-art performance across a variety of tasks. |
Accepted to ECCV2024 |
Haze-Aware Attention Network for Single-Image Dehazing | 2024-07-16 | ShowSingle-image dehazing is a pivotal challenge in computer vision that seeks to remove haze from images and restore clean background details. Recognizing the limitations of traditional physical model-based methods and the inefficiencies of current attention-based solutions, we propose a new dehazing network combining an innovative Haze-Aware Attention Module (HAAM) with a Multiscale Frequency Enhancement Module (MFEM). The HAAM is inspired by the atmospheric scattering model, thus skillfully integrating physical principles into high-dimensional features for targeted dehazing. It picks up on latent features during the image restoration process, which gives a significant boost to the metrics, while the MFEM efficiently enhances high-frequency details, thus sidestepping wavelet or Fourier transform complexities. It employs multiscale fields to extract and emphasize key frequency components with minimal parameter overhead. Integrated into a simple U-Net framework, our Haze-Aware Attention Network (HAA-Net) for single-image dehazing significantly outperforms existing attention-based and transformer models in efficiency and effectiveness. Tested across various public datasets, the HAA-Net sets new performance benchmarks. Our work not only advances the field of image dehazing but also offers insights into the design of attention mechanisms for broader applications in computer vision. |
13 pages, 6 figures |
SPIRE: Semantic Prompt-Driven Image Restoration | 2024-07-16 | ShowText-driven diffusion models have become increasingly popular for various image editing tasks, including inpainting, stylization, and object replacement. However, it still remains an open research problem to adopt this language-vision paradigm for more fine-level image processing tasks, such as denoising, super-resolution, deblurring, and compression artifact removal. In this paper, we develop SPIRE, a Semantic and restoration Prompt-driven Image Restoration framework that leverages natural language as a user-friendly interface to control the image restoration process. We consider the capacity of prompt information in two dimensions. First, we use content-related prompts to enhance the semantic alignment, effectively alleviating identity ambiguity in the restoration outcomes. Second, our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength, without the need for explicit task-specific design. In addition, we introduce a novel fusion mechanism that augments the existing ControlNet architecture by learning to rescale the generative prior, thereby achieving better restoration fidelity. Our extensive experiments demonstrate the superior restoration performance of SPIRE compared to the state of the arts, alongside offering the flexibility of text-based control over the restoration effects. |
Accep...Accepted by ECCV 2024; Webpage: https://chenyangqiqi.github.io/tip |
Title | Date | Abstract | Comment |
---|---|---|---|
Estimating Body and Hand Motion in an Ego-sensed World | 2024-10-04 | ShowWe present EgoAllo, a system for human motion estimation from a head-mounted device. Using only egocentric SLAM poses and images, EgoAllo guides sampling from a conditional diffusion model to estimate 3D body pose, height, and hand parameters that capture the wearer's actions in the allocentric coordinate frame of the scene. To achieve this, our key insight is in representation: we propose spatial and temporal invariance criteria for improving model performance, from which we derive a head motion conditioning parameterization that improves estimation by up to 18%. We also show how the bodies estimated by our system can improve the hands: the resulting kinematic and temporal constraints result in over 40% lower hand estimation errors compared to noisy monocular estimates. Project page: https://egoallo.github.io/ |
Proje...Project page: https://egoallo.github.io/ |
DiffusionPID: Interpreting Diffusion via Partial Information Decomposition | 2024-10-04 | ShowText-to-image diffusion models have made significant progress in generating naturalistic images from textual inputs, and demonstrate the capacity to learn and represent complex visual-semantic relationships. While these diffusion models have achieved remarkable success, the underlying mechanisms driving their performance are not yet fully accounted for, with many unanswered questions surrounding what they learn, how they represent visual-semantic relationships, and why they sometimes fail to generalize. Our work presents Diffusion Partial Information Decomposition (DiffusionPID), a novel technique that applies information-theoretic principles to decompose the input text prompt into its elementary components, enabling a detailed examination of how individual tokens and their interactions shape the generated image. We introduce a formal approach to analyze the uniqueness, redundancy, and synergy terms by applying PID to the denoising model at both the image and pixel level. This approach enables us to characterize how individual tokens and their interactions affect the model output. We first present a fine-grained analysis of characteristics utilized by the model to uniquely localize specific concepts, we then apply our approach in bias analysis and show it can recover gender and ethnicity biases. Finally, we use our method to visually characterize word ambiguity and similarity from the model's perspective and illustrate the efficacy of our method for prompt intervention. Our results show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models. |
|
Real-World Benchmarks Make Membership Inference Attacks Fail on Diffusion Models | 2024-10-04 | ShowMembership inference attacks (MIAs) on diffusion models have emerged as potential evidence of unauthorized data usage in training pre-trained diffusion models. These attacks aim to detect the presence of specific images in training datasets of diffusion models. Our study delves into the evaluation of state-of-the-art MIAs on diffusion models and reveals critical flaws and overly optimistic performance estimates in existing MIA evaluation. We introduce CopyMark, a more realistic MIA benchmark that distinguishes itself through the support for pre-trained diffusion models, unbiased datasets, and fair evaluation pipelines. Through extensive experiments, we demonstrate that the effectiveness of current MIA methods significantly degrades under these more practical conditions. Based on our results, we alert that MIA, in its current state, is not a reliable approach for identifying unauthorized data usage in pre-trained diffusion models. To the best of our knowledge, we are the first to discover the performance overestimation of MIAs on diffusion models and present a unified benchmark for more realistic evaluation. Our code is available on GitHub: \url{https://github.com/caradryanl/CopyMark}. |
|
AID: Attention Interpolation of Text-to-Image Diffusion | 2024-10-04 | ShowConditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or poses is less understood. Simple approaches, such as linear interpolation in the space of conditions, often result in images that lack consistency, smoothness, and fidelity. To that end, we introduce a novel training-free technique named Attention Interpolation via Diffusion (AID). Our key contributions include 1) proposing an inner/outer interpolated attention layer; 2) fusing the interpolated attention with self-attention to boost fidelity; and 3) applying beta distribution to selection to increase smoothness. We also present a variant, Prompt-guided Attention Interpolation via Diffusion (PAID), that considers interpolation as a condition-dependent generative process. This method enables the creation of new images with greater consistency, smoothness, and efficiency, and offers control over the exact path of interpolation. Our approach demonstrates effectiveness for conceptual and spatial interpolation. Code and demo are available at https://github.com/QY-H00/attention-interpolation-diffusion. |
NeurI...NeurIPS 2024 Conference Paper |
How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework | 2024-10-04 | ShowDiscrete diffusion models have gained increasing attention for their ability to model complex distributions with tractable sampling and inference. However, the error analysis for discrete diffusion models remains less well-understood. In this work, we propose a comprehensive framework for the error analysis of discrete diffusion models based on L'evy-type stochastic integrals. By generalizing the Poisson random measure to that with a time-independent and state-dependent intensity, we rigorously establish a stochastic integral formulation of discrete diffusion models and provide the corresponding change of measure theorems that are intriguingly analogous to It^o integrals and Girsanov's theorem for their continuous counterparts. Our framework unifies and strengthens the current theoretical results on discrete diffusion models and obtains the first error bound for the |
|
Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise | 2024-10-04 | ShowRecently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion. |
NeurIPS 2024 |
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features | 2024-10-04 | ShowDiffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks such as semantic segmentation. Given numerous activations, selecting a small yet effective subset poses a fundamental problem. To this end, the early study of this field performs a large-scale quantitative comparison of the discriminative ability of the activations. However, we find that many potential activations have not been evaluated, such as the queries and keys used to compute attention scores. Moreover, recent advancements in diffusion architectures bring many new activations, such as those within embedded ViT modules. Both combined, activation selection remains unresolved but overlooked. To tackle this issue, this paper takes a further step with a much broader range of activations evaluated. Considering the significant increase in activations, a full-scale quantitative comparison is no longer operational. Instead, we seek to understand the properties of these activations, such that the activations that are clearly inferior can be filtered out in advance via simple qualitative evaluation. After careful analysis, we discover three properties universal among diffusion models, enabling this study to go beyond specific models. On top of this, we present effective feature selection solutions for several popular diffusion models. Finally, the experiments across multiple discriminative tasks validate the superiority of our method over the SOTA competitors. Our code is available at https://github.com/Darkbblue/generic-diffusion-feature. |
|
Learning to Discretize Denoising Diffusion ODEs | 2024-10-04 | ShowDiffusion Probabilistic Models (DPMs) are generative models showing competitive performance in various domains, including image synthesis and 3D point cloud generation. Sampling from pre-trained DPMs involves multiple neural function evaluations (NFE) to transform Gaussian noise samples into images, resulting in higher computational costs compared to single-step generative models such as GANs or VAEs. Therefore, reducing the number of NFEs while preserving generation quality is crucial. To address this, we propose LD3, a lightweight framework designed to learn the optimal time discretization for sampling. LD3 can be combined with various samplers and consistently improves generation quality without having to retrain resource-intensive neural networks. We demonstrate analytically and empirically that LD3 improves sampling efficiency with much less computational overhead. We evaluate our method with extensive experiments on 7 pre-trained models, covering unconditional and conditional sampling in both pixel-space and latent-space DPMs. We achieve FIDs of 2.38 (10 NFE), and 2.27 (10 NFE) on unconditional CIFAR10 and AFHQv2 in 5-10 minutes of training. LD3 offers an efficient approach to sampling from pre-trained diffusion models. Code is available at https://github.com/vinhsuhi/LD3/tree/main. |
|
DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models | 2024-10-04 | ShowThis paper introduces a method for zero-shot video restoration using pre-trained image restoration diffusion models. Traditional video restoration methods often need retraining for different settings and struggle with limited generalization across various degradation types and datasets. Our approach uses a hierarchical token merging strategy for keyframes and local frames, combined with a hybrid correspondence mechanism that blends optical flow and feature-based nearest neighbor matching (latent merging). We show that our method not only achieves top performance in zero-shot video restoration but also significantly surpasses trained models in generalization across diverse datasets and extreme degradations (8$\times$ super-resolution and high-standard deviation video denoising). We present evidence through quantitative metrics and visual comparisons on various challenging datasets. Additionally, our technique works with any 2D restoration diffusion model, offering a versatile and powerful tool for video enhancement tasks without extensive retraining. This research leads to more efficient and widely applicable video restoration technologies, supporting advancements in fields that require high-quality video output. See our project page for video results and source code at https://jimmycv07.github.io/DiffIR2VR_web/. |
Proje...Project page: https://jimmycv07.github.io/DiffIR2VR_web/ |
Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion | 2024-10-04 | ShowHow to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of visual decoding and reconstruction based on functional Magnetic Resonance Imaging (fMRI). However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for visual decoding based on electroencephalography (EEG). In this study, we present an end-to-end EEG-based visual reconstruction zero-shot framework, consisting of a tailored brain encoder, called the Adaptive Thinking Mapper (ATM), which projects neural signals from different sources into the shared subspace as the clip embedding, and a two-stage multi-pipe EEG-to-image generation strategy. In stage one, EEG is embedded to align the high-level clip embedding, and then the prior diffusion model refines EEG embedding into image priors. A blurry image also decoded from EEG for maintaining the low-level feature. In stage two, we input both the high-level clip embedding, the blurry image and caption from EEG latent to a pre-trained diffusion model. Furthermore, we analyzed the impacts of different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data modality. The experimental results indicate that our EEG-based visual zero-shot framework achieves SOTA performance in classification, retrieval and reconstruction, highlighting the portability, low cost, and high temporal resolution of EEG, enabling a wide range of BCI applications. Our code is available at https://github.com/ncclab-sustech/EEG_Image_decode. |
|
Diffusion State-Guided Projected Gradient for Inverse Problems | 2024-10-04 | ShowRecent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. |
prepr...preprint. under review. RZ and BT have equal contributions |
Recurrent Interpolants for Probabilistic Time Series Prediction | 2024-10-04 | ShowSequential models like recurrent neural networks and transformers have become standard for probabilistic multivariate time series forecasting across various domains. Despite their strengths, they struggle with capturing high-dimensional distributions and cross-feature dependencies. Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting. However, scalability remains a challenge. This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on stochastic interpolants and conditional generation with control features, offering insights for future developments in this dynamic field. |
|
Generative Semantic Communication for Text-to-Speech Synthesis | 2024-10-04 | ShowSemantic communication is a promising technology to improve communication efficiency by transmitting only the semantic information of the source data. However, traditional semantic communication methods primarily focus on data reconstruction tasks, which may not be efficient for emerging generative tasks such as text-to-speech (TTS) synthesis. To address this limitation, this paper develops a novel generative semantic communication framework for TTS synthesis, leveraging generative artificial intelligence technologies. Firstly, we utilize a pre-trained large speech model called WavLM and the residual vector quantization method to construct two semantic knowledge bases (KBs) at the transmitter and receiver, respectively. The KB at the transmitter enables effective semantic extraction, while the KB at the receiver facilitates lifelike speech synthesis. Then, we employ a transformer encoder and a diffusion model to achieve efficient semantic coding without introducing significant communication overhead. Finally, numerical results demonstrate that our framework achieves much higher fidelity for the generated speech than four baselines, in both cases with additive white Gaussian noise channel and Rayleigh fading channel. |
The p...The paper has been accepted by IEEE Globecom Workshop |
Dynamic Diffusion Transformer | 2024-10-04 | ShowDiffusion Transformer (DiT), an emerging diffusion model for image generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To address this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation. Specifically, we introduce a Timestep-wise Dynamic Width (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a Spatial-wise Dynamic Token (SDT) strategy to avoid redundant computation at unnecessary spatial locations. Extensive experiments on various datasets and different-sized models verify the superiority of DyDiT. Notably, with <3% additional fine-tuning iterations, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet. The code is publicly available at https://github.com/NUS-HPC-AI-Lab/ Dynamic-Diffusion-Transformer. |
|
Diffusing in Someone Else's Shoes: Robotic Perspective Taking with Diffusion | 2024-10-04 | ShowHumanoid robots can benefit from their similarity to the human shape by learning from humans. When humans teach other humans how to perform actions, they often demonstrate the actions, and the learning human imitates the demonstration to get an idea of how to perform the action. Being able to mentally transfer from a demonstration seen from a third-person perspective to how it should look from a first-person perspective is fundamental for this ability in humans. As this is a challenging task, it is often simplified for robots by creating demonstrations from the first-person perspective. Creating these demonstrations allows for an easier imitation but requires more effort. Therefore, we introduce a novel diffusion model that enables the robot to learn from the third-person demonstrations directly by learning to generate the first-person perspective from the third-person perspective. The model translates the size and rotations of objects and the environment between the two perspectives. This allows us to utilise the benefits of easy-to-produce third-person demonstrations and easy-to-imitate first-person demonstrations. |
Submi...Submitted to Humanoids |
CLoSD: Closing the Loop between Simulation and Diffusion for multi-task character control | 2024-10-04 | ShowMotion diffusion models and Reinforcement Learning (RL) based control for physics-based simulations have complementary strengths for human motion generation. The former is capable of generating a wide variety of motions, adhering to intuitive control such as text, while the latter offers physically plausible motion and direct interaction with the environment. In this work, we present a method that combines their respective strengths. CLoSD is a text-driven RL physics-based controller, guided by diffusion generation for various tasks. Our key insight is that motion diffusion can serve as an on-the-fly universal planner for a robust RL controller. To this end, CLoSD maintains a closed-loop interaction between two modules -- a Diffusion Planner (DiP), and a tracking controller. DiP is a fast-responding autoregressive diffusion model, controlled by textual prompts and target locations, and the controller is a simple and robust motion imitator that continuously receives motion plans from DiP and provides feedback from the environment. CLoSD is capable of seamlessly performing a sequence of different tasks, including navigation to a goal location, striking an object with a hand or foot as specified in a text prompt, sitting down, and getting up. https://guytevet.github.io/CLoSD-page/ |
|
DiffSF: Diffusion Models for Scene Flow Estimation | 2024-10-04 | ShowScene flow estimation is an essential ingredient for a variety of real-world applications, especially for autonomous agents, such as self-driving cars and robots. While recent scene flow estimation approaches achieve a reasonable accuracy, their applicability to real-world systems additionally benefits from a reliability measure. Aiming at improving accuracy while additionally providing an estimate for uncertainty, we propose DiffSF that combines transformer-based scene flow estimation with denoising diffusion models. In the diffusion process, the ground truth scene flow vector field is gradually perturbed by adding Gaussian noise. In the reverse process, starting from randomly sampled Gaussian noise, the scene flow vector field prediction is recovered by conditioning on a source and a target point cloud. We show that the diffusion process greatly increases the robustness of predictions compared to prior approaches resulting in state-of-the-art performance on standard scene flow estimation benchmarks. Moreover, by sampling multiple times with different initial states, the denoising process predicts multiple hypotheses, which enables measuring the output uncertainty, allowing our approach to detect a majority of the inaccurate predictions. The code is available at https://github.com/ZhangYushan3/DiffSF. |
|
Latent Abstractions in Generative Diffusion Models | 2024-10-04 | ShowIn this work we study how diffusion-based generative models produce high-dimensional data, such as an image, by implicitly relying on a manifestation of a low-dimensional set of latent abstractions, that guide the generative process. We present a novel theoretical framework that extends NLF, and that offers a unique perspective on SDE-based generative models. The development of our theory relies on a novel formulation of the joint (state and measurement) dynamics, and an information-theoretic measure of the influence of the system state on the measurement process. According to our theory, diffusion models can be cast as a system of SDE, describing a non-linear filter in which the evolution of unobservable latent abstractions steers the dynamics of an observable measurement process (corresponding to the generative pathways). In addition, we present an empirical study to validate our theory and previous empirical results on the emergence of latent abstractions at different stages of the generative process. |
|
LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding | 2024-10-04 | ShowAuto-Regressive (AR) models have recently gained prominence in image generation, often matching or even surpassing the performance of diffusion models. However, one major limitation of AR models is their sequential nature, which processes tokens one at a time, slowing down generation compared to models like GANs or diffusion-based methods that operate more efficiently. While speculative decoding has proven effective for accelerating LLMs by generating multiple tokens in a single forward, its application in visual AR models remains largely unexplored. In this work, we identify a challenge in this setting, which we term \textit{token selection ambiguity}, wherein visual AR models frequently assign uniformly low probabilities to tokens, hampering the performance of speculative decoding. To overcome this challenge, we propose a relaxed acceptance condition referred to as LANTERN that leverages the interchangeability of tokens in latent space. This relaxation restores the effectiveness of speculative decoding in visual AR models by enabling more flexible use of candidate tokens that would otherwise be prematurely rejected. Furthermore, by incorporating a total variation distance bound, we ensure that these speed gains are achieved without significantly compromising image quality or semantic coherence. Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding. In specific, compared to a na"ive application of the state-of-the-art speculative decoding, LANTERN increases speed-ups by |
|
Explainable Artifacts for Synthetic Western Blot Source Attribution | 2024-10-04 | ShowRecent advancements in artificial intelligence have enabled generative models to produce synthetic scientific images that are indistinguishable from pristine ones, posing a challenge even for expert scientists habituated to working with such content. When exploited by organizations known as paper mills, which systematically generate fraudulent articles, these technologies can significantly contribute to the spread of misinformation about ungrounded science, potentially undermining trust in scientific research. While previous studies have explored black-box solutions, such as Convolutional Neural Networks, for identifying synthetic content, only some have addressed the challenge of generalizing across different models and providing insight into the artifacts in synthetic images that inform the detection process. This study aims to identify explainable artifacts generated by state-of-the-art generative models (e.g., Generative Adversarial Networks and Diffusion Models) and leverage them for open-set identification and source attribution (i.e., pointing to the model that created the image). |
Accep...Accepted in IEEE International Workshop on Information Forensics and Security - WIFS 2024, Rome, Italy |
HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration | 2024-10-04 | ShowDiffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep. |
Code ...Code will be released soon |
Cometh: A continuous-time discrete-state graph diffusion model | 2024-10-04 | ShowDiscrete-state denoising diffusion models led to state-of-the-art performance in graph generation, especially in the molecular domain. Recently, they have been transposed to continuous time, allowing more flexibility in the reverse process and a better trade-off between sampling efficiency and quality. Here, to leverage the benefits of both approaches, we propose Cometh, a continuous-time discrete-state graph diffusion model, tailored to the specificities of graph data. In addition, we also successfully replaced the set of structural encodings previously used in the discrete graph diffusion model with a single random-walk-based encoding, providing a simple and principled way to boost the model's expressive power. Empirically, we show that integrating continuous time leads to significant improvements across various metrics over state-of-the-art discrete-state diffusion models on a large set of molecular and non-molecular benchmark datasets. In terms of VUN samples, Cometh obtains a near-perfect performance of 99.5% on the planar graph dataset and outperforms DiGress by 12.6% on the large GuacaMol dataset. |
23 pages |
Simple Drop-in LoRA Conditioning on Attention Layers Will Improve Your Diffusion Model | 2024-10-04 | ShowCurrent state-of-the-art diffusion models employ U-Net architectures containing convolutional and (qkv) self-attention layers. The U-Net processes images while being conditioned on the time embedding input for each sampling step and the class or caption embedding input corresponding to the desired conditional generation. Such conditioning involves scale-and-shift operations to the convolutional layers but does not directly affect the attention layers. While these standard architectural choices are certainly effective, not conditioning the attention layers feels arbitrary and potentially suboptimal. In this work, we show that simply adding LoRA conditioning to the attention layers without changing or tuning the other parts of the U-Net architecture improves the image generation quality. For example, a drop-in addition of LoRA conditioning to EDM diffusion model yields FID scores of 1.91/1.75 for unconditional and class-conditional CIFAR-10 generation, improving upon the baseline of 1.97/1.79. |
|
TGIF: Text-Guided Inpainting Forgery Dataset | 2024-10-04 | ShowDigital image manipulation has become increasingly accessible and realistic with the advent of generative AI technologies. Recent developments allow for text-guided inpainting, making sophisticated image edits possible with minimal effort. This poses new challenges for digital media forensics. For example, diffusion model-based approaches could either splice the inpainted region into the original image, or regenerate the entire image. In the latter case, traditional image forgery localization (IFL) methods typically fail. This paper introduces the Text-Guided Inpainting Forgery (TGIF) dataset, a comprehensive collection of images designed to support the training and evaluation of image forgery localization and synthetic image detection (SID) methods. The TGIF dataset includes approximately 75k forged images, originating from popular open-source and commercial methods, namely SD2, SDXL, and Adobe Firefly. We benchmark several state-of-the-art IFL and SID methods on TGIF. Whereas traditional IFL methods can detect spliced images, they fail to detect regenerated inpainted images. Moreover, traditional SID may detect the regenerated inpainted images to be fake, but cannot localize the inpainted area. Finally, both IFL and SID methods fail when exposed to stronger compression, while they are less robust to modern compression algorithms, such as WEBP. In conclusion, this work demonstrates the inefficiency of state-of-the-art detectors on local manipulations performed by modern generative approaches, and aspires to help with the development of more capable IFL and SID methods. The dataset and code can be downloaded at https://github.com/IDLabMedia/tgif-dataset. |
6 pag...6 pages, accepted at IEEE WIFS 2024 |
Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation | 2024-10-04 | ShowThe Diffusion Model has not only garnered noteworthy achievements in the realm of image generation but has also demonstrated its potential as an effective pretraining method utilizing unlabeled data. Drawing from the extensive potential unveiled by the Diffusion Model in both semantic correspondence and open vocabulary segmentation, our work initiates an investigation into employing the Latent Diffusion Model for Few-shot Semantic Segmentation. Recently, inspired by the in-context learning ability of large language models, Few-shot Semantic Segmentation has evolved into In-context Segmentation tasks, morphing into a crucial element in assessing generalist segmentation models. In this context, we concentrate on Few-shot Semantic Segmentation, establishing a solid foundation for the future development of a Diffusion-based generalist model for segmentation. Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework. Subsequently, we delve deeper into optimizing the infusion of information from the support mask and simultaneously re-evaluating how to provide reasonable supervision from the query mask. Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework and effectively utilizing the pre-training prior. Experimental results demonstrate that our method significantly outperforms the previous SOTA models in multiple settings. |
Accep...Accepted to Proc. Annual Conference on Neural Information Processing Systems (NeurIPS) 2024 |
Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization | 2024-10-04 | ShowRecent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models. |
|
Autonomous Character-Scene Interaction Synthesis from Text Instruction | 2024-10-04 | ShowSynthesizing human motions in 3D environments, particularly those with complex activities such as locomotion, hand-reaching, and human-object interaction, presents substantial demands for user-defined waypoints and stage transitions. These requirements pose challenges for current models, leading to a notable gap in automating the animation of characters from simple human inputs. This paper addresses this challenge by introducing a comprehensive framework for synthesizing multi-stage scene-aware interaction motions directly from a single text instruction and goal location. Our approach employs an auto-regressive diffusion model to synthesize the next motion segment, along with an autonomous scheduler predicting the transition for each action stage. To ensure that the synthesized motions are seamlessly integrated within the environment, we propose a scene representation that considers the local perception both at the start and the goal location. We further enhance the coherence of the generated motion by integrating frame embeddings with language input. Additionally, to support model training, we present a comprehensive motion-captured dataset comprising 16 hours of motion sequences in 120 indoor scenes covering 40 types of motions, each annotated with precise language descriptions. Experimental results demonstrate the efficacy of our method in generating high-quality, multi-stage motions closely aligned with environmental and textual conditions. |
|
Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration | 2024-10-04 | ShowAlthough learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise space using diffusion models. In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss that guides the restoration model in progressively aligning both restored synthetic and real-world outputs with a target clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during joint training, we present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model. They implicitly blur the boundaries between conditioned synthetic and real data and prevent the reliance of the model on easily distinguishable features. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method. |
Proje...Project Page: https://kangliao929.github.io/projects/noise-da/ |
Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach | 2024-10-04 | ShowDiffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications. |
Code ... |
A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems | 2024-10-04 | ShowThis study introduces a training-free conditional diffusion model for learning unknown stochastic differential equations (SDEs) using data. The proposed approach addresses key challenges in computational efficiency and accuracy for modeling SDEs by utilizing a score-based diffusion model to approximate their stochastic flow map. Unlike the existing methods, this technique is based on an analytically derived closed-form exact score function, which can be efficiently estimated by Monte Carlo method using the trajectory data, and eliminates the need for neural network training to learn the score function. By generating labeled data through solving the corresponding reverse ordinary differential equation, the approach enables supervised learning of the flow map. Extensive numerical experiments across various SDE types, including linear, nonlinear, and multi-dimensional systems, demonstrate the versatility and effectiveness of the method. The learned models exhibit significant improvements in predicting both short-term and long-term behaviors of unknown stochastic systems, often surpassing baseline methods like GANs in estimating drift and diffusion coefficients. |
|
Multi-hypotheses Conditioned Point Cloud Diffusion for 3D Human Reconstruction from Occluded Images | 2024-10-04 | Show3D human shape reconstruction under severe occlusion due to human-object or human-human interaction is a challenging problem. Parametric models i.e., SMPL(-X), which are based on the statistics across human shapes, can represent whole human body shapes but are limited to minimally-clothed human shapes. Implicit-function-based methods extract features from the parametric models to employ prior knowledge of human bodies and can capture geometric details such as clothing and hair. However, they often struggle to handle misaligned parametric models and inpaint occluded regions given a single RGB image. In this work, we propose a novel pipeline, MHCDIFF, Multi-hypotheses Conditioned Point Cloud Diffusion, composed of point cloud diffusion conditioned on probabilistic distributions for pixel-aligned detailed 3D human reconstruction under occlusion. Compared to previous implicit-function-based methods, the point cloud diffusion model can capture the global consistent features to generate the occluded regions, and the denoising process corrects the misaligned SMPL meshes. The core of MHCDIFF is extracting local features from multiple hypothesized SMPL(-X) meshes and aggregating the set of features to condition the diffusion model. In the experiments on CAPE and MultiHuman datasets, the proposed method outperforms various SOTA methods based on SMPL, implicit functions, point cloud diffusion, and their combined, under synthetic and real occlusions. Our code is publicly available at https://donghwankim0101.github.io/projects/mhcdiff/ . |
17 pa...17 pages, 7 figures, accepted NeurIPS 2024 |
Combing Text-based and Drag-based Editing for Precise and Flexible Image Editing | 2024-10-04 | ShowPrecise and flexible image editing remains a fundamental challenge in computer vision. Based on the modified areas, most editing methods can be divided into two main types: global editing and local editing. In this paper, we choose the two most common editing approaches (ie text-based editing and drag-based editing) and analyze their drawbacks. Specifically, text-based methods often fail to describe the desired modifications precisely, while drag-based methods suffer from ambiguity. To address these issues, we proposed \textbf{CLIPDrag}, a novel image editing method that is the first to combine text and drag signals for precise and ambiguity-free manipulations on diffusion models. To fully leverage these two signals, we treat text signals as global guidance and drag points as local information. Then we introduce a novel global-local motion supervision method to integrate text signals into existing drag-based methods by adapting a pre-trained language-vision model like CLIP. Furthermore, we also address the problem of slow convergence in CLIPDrag by presenting a fast point-tracking method that enforces drag points moving toward correct directions. Extensive experiments demonstrate that CLIPDrag outperforms existing single drag-based methods or text-based methods. |
12 pages, 9 figures |
Diffusion Models are Evolutionary Algorithms | 2024-10-04 | ShowIn a convergence of machine learning and biology, we reveal that diffusion models are evolutionary algorithms. By considering evolution as a denoising process and reversed evolution as diffusion, we mathematically demonstrate that diffusion models inherently perform evolutionary algorithms, naturally encompassing selection, mutation, and reproductive isolation. Building on this equivalence, we propose the Diffusion Evolution method: an evolutionary algorithm utilizing iterative denoising -- as originally introduced in the context of diffusion models -- to heuristically refine solutions in parameter spaces. Unlike traditional approaches, Diffusion Evolution efficiently identifies multiple optimal solutions and outperforms prominent mainstream evolutionary algorithms. Furthermore, leveraging advanced concepts from diffusion models, namely latent space diffusion and accelerated sampling, we introduce Latent Space Diffusion Evolution, which finds solutions for evolutionary tasks in high-dimensional complex parameter space while significantly reducing computational steps. This parallel between diffusion and evolution not only bridges two different fields but also opens new avenues for mutual enhancement, raising questions about open-ended evolution and potentially utilizing non-Gaussian or discrete diffusion models in the context of Diffusion Evolution. |
15 pa...15 pages, 4 figures, 2 tables |
Generative Edge Detection with Stable Diffusion | 2024-10-04 | ShowEdge detection is typically viewed as a pixel-level classification problem mainly addressed by discriminative methods. Recently, generative edge detection methods, especially diffusion model based solutions, are initialized in the edge detection task. Despite great potential, the retraining of task-specific designed modules and multi-step denoising inference limits their broader applications. Upon closer investigation, we speculate that part of the reason is the under-exploration of the rich discriminative information encoded in extensively pre-trained large models (\eg, stable diffusion models). Thus motivated, we propose a novel approach, named Generative Edge Detector (GED), by fully utilizing the potential of the pre-trained stable diffusion model. Our model can be trained and inferred efficiently without specific network design due to the rich high-level and low-level prior knowledge empowered by the pre-trained stable diffusion. Specifically, we propose to finetune the denoising U-Net and predict latent edge maps directly, by taking the latent image feature maps as input. Additionally, due to the subjectivity and ambiguity of the edges, we also incorporate the granularity of the edges into the denoising U-Net model as one of the conditions to achieve controllable and diverse predictions. Furthermore, we devise a granularity regularization to ensure the relative granularity relationship of the multiple predictions. We conduct extensive experiments on multiple datasets and achieve competitive performance (\eg, 0.870 and 0.880 in terms of ODS and OIS on the BSDS test dataset). |
|
Multi-Robot Motion Planning with Diffusion Models | 2024-10-04 | ShowDiffusion models have recently been successfully applied to a wide range of robotics applications for learning complex multi-modal behaviors from data. However, prior works have mostly been confined to single-robot and small-scale environments due to the high sample complexity of learning multi-robot diffusion models. In this paper, we propose a method for generating collision-free multi-robot trajectories that conform to underlying data distributions while using only single-robot data. Our algorithm, Multi-robot Multi-model planning Diffusion (MMD), does so by combining learned diffusion models with classical search-based techniques -- generating data-driven motions under collision constraints. Scaling further, we show how to compose multiple diffusion models to plan in large environments where a single diffusion model fails to generalize well. We demonstrate the effectiveness of our approach in planning for dozens of robots in a variety of simulated scenarios motivated by logistics environments. View video demonstrations in our supplementary material, and our code at: https://github.com/yoraish/mmd. |
The f...The first three authors contributed equally to this work. Under review for ICLR 2025 |
WcDT: World-centric Diffusion Transformer for Traffic Scene Generation | 2024-10-04 | ShowIn this paper, we introduce a novel approach for autonomous driving trajectory generation by harnessing the complementary strengths of diffusion probabilistic models (a.k.a., diffusion models) and transformers. Our proposed framework, termed the "World-Centric Diffusion Transformer"(WcDT), optimizes the entire trajectory generation process, from feature extraction to model inference. To enhance the scene diversity and stochasticity, the historical trajectory data is first preprocessed into "Agent Move Statement" and encoded into latent space using Denoising Diffusion Probabilistic Models (DDPM) enhanced with Diffusion with Transformer (DiT) blocks. Then, the latent features, historical trajectories, HD map features, and historical traffic signal information are fused with various transformer-based encoders that are used to enhance the interaction of agents with other elements in the traffic scene. The encoded traffic scenes are then decoded by a trajectory decoder to generate multimodal future trajectories. Comprehensive experimental results show that the proposed approach exhibits superior performance in generating both realistic and diverse trajectories, showing its potential for integration into automatic driving simulation systems. Our code is available at \url{https://github.com/yangchen1997/WcDT}. |
7 pages, 5 figures |
Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data | 2024-10-03 | ShowDiffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small set of images to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the potential risks of data leakage by releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model's learned distribution -- from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting approximately 20% of fine-tuning data in most cases, significantly surpassing baseline performance. |
Under review |
Statistical Test on Diffusion Model-based Anomaly Detection by Selective Inference | 2024-10-03 | ShowAdvancements in AI image generation, particularly diffusion models, have progressed rapidly. However, the absence of an established framework for quantifying the reliability of AI-generated images hinders their use in critical decision-making tasks, such as medical image diagnosis. In this study, we address the task of detecting anomalous regions in medical images using diffusion models and propose a statistical method to quantify the reliability of the detected anomalies. The core concept of our method involves a selective inference framework, wherein statistical tests are conducted under the condition that the images are produced by a diffusion model. With our approach, the statistical significance of anomaly detection results can be quantified in the form of a |
30 pages, 7 figures |
Controlling the Fidelity and Diversity of Deep Generative Models via Pseudo Density | 2024-10-03 | ShowWe introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with either enhanced fidelity or increased diversity. Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density, which is based on the nearest-neighbor information from real samples. Our approach offers three distinct techniques to adjust the fidelity and diversity of deep generative models: 1) Per-sample perturbation, enabling precise adjustments for individual samples towards either more common or more unique characteristics; 2) Importance sampling during model inference to enhance either fidelity or diversity in the generated data; 3) Fine-tuning with importance sampling, which guides the generative model to learn an adjusted distribution, thus controlling fidelity and diversity. Furthermore, our fine-tuning method demonstrates the ability to improve the Frechet Inception Distance (FID) for pre-trained generative models with minimal iterations. |
|
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting | 2024-10-03 | ShowRecent advancements in generative modeling, particularly diffusion models, have opened new directions for time series modeling, achieving state-of-the-art performance in forecasting and synthesis. However, the reliance of diffusion-based models on a simple, fixed prior complicates the generative process since the data and prior distributions differ significantly. We introduce TSFlow, a conditional flow matching (CFM) model for time series that simplifies the generative problem by combining Gaussian processes, optimal transport paths, and data-dependent prior distributions. By incorporating (conditional) Gaussian processes, TSFlow aligns the prior distribution more closely with the temporal structure of the data, enhancing both unconditional and conditional generation. Furthermore, we propose conditional prior sampling to enable probabilistic forecasting with an unconditionally trained model. In our experimental evaluation on eight real-world datasets, we demonstrate the generative capabilities of TSFlow, producing high-quality unconditional samples. Finally, we show that both conditionally and unconditionally trained models achieve competitive results in forecasting benchmarks, surpassing other methods on 6 out of 8 datasets. |
|
PixelShuffler: A Simple Image Translation Through Pixel Rearrangement | 2024-10-03 | ShowImage-to-image translation is a topic in computer vision that has a vast range of use cases ranging from medical image translation, such as converting MRI scans to CT scans or to other MRI contrasts, to image colorization, super-resolution, domain adaptation, and generating photorealistic images from sketches or semantic maps. Image style transfer is also a widely researched application of image-to-image translation, where the goal is to synthesize an image that combines the content of one image with the style of another. Existing state-of-the-art methods often rely on complex neural networks, including diffusion models and language models, to achieve high-quality style transfer, but these methods can be computationally expensive and intricate to implement. In this paper, we propose a novel pixel shuffle method that addresses the image-to-image translation problem generally with a specific demonstrative application in style transfer. The proposed method approaches style transfer by shuffling the pixels of the style image such that the mutual information between the shuffled image and the content image is maximized. This approach inherently preserves the colors of the style image while ensuring that the structural details of the content image are retained in the stylized output. We demonstrate that this simple and straightforward method produces results that are comparable to state-of-the-art techniques, as measured by the Learned Perceptual Image Patch Similarity (LPIPS) loss for content preservation and the Fr'echet Inception Distance (FID) score for style similarity. Our experiments validate that the proposed pixel shuffle method achieves competitive performance with significantly reduced complexity, offering a promising alternative for efficient image style transfer, as well as a promise in usability of the method in general image-to-image translation tasks. |
|
Learning Optimal Control and Dynamical Structure of Global Trajectory Search Problems with Diffusion Models | 2024-10-03 | ShowSpacecraft trajectory design is a global search problem, where previous work has revealed specific solution structures that can be captured with data-driven methods. This paper explores two global search problems in the circular restricted three-body problem: hybrid cost function of minimum fuel/time-of-flight and transfers to energy-dependent invariant manifolds. These problems display a fundamental structure either in the optimal control profile or the use of dynamical structures. We build on our prior generative machine learning framework to apply diffusion models to learn the conditional probability distribution of the search problem and analyze the model's capability to capture these structures. |
This ...This paper was presented at the AAS/AIAA Astrodynamics Specialist Conference |
MosaicFusion: Diffusion Models as Data Augmenters for Large Vocabulary Instance Segmentation | 2024-10-03 | ShowWe present MosaicFusion, a simple yet effective diffusion-based data augmentation approach for large vocabulary instance segmentation. Our method is training-free and does not rely on any label supervision. Two key designs enable us to employ an off-the-shelf text-to-image diffusion model as a useful dataset generator for object instances and mask annotations. First, we divide an image canvas into several regions and perform a single round of diffusion process to generate multiple instances simultaneously, conditioning on different text prompts. Second, we obtain corresponding instance masks by aggregating cross-attention maps associated with object prompts across layers and diffusion time steps, followed by simple thresholding and edge-aware refinement processing. Without bells and whistles, our MosaicFusion can produce a significant amount of synthetic labeled data for both rare and novel categories. Experimental results on the challenging LVIS long-tailed and open-vocabulary benchmarks demonstrate that MosaicFusion can significantly improve the performance of existing instance segmentation models, especially for rare and novel categories. Code: https://github.com/Jiahao000/MosaicFusion. |
Inter...International Journal of Computer Vision (IJCV), 2024 |
SymmetricDiffusers: Learning Discrete Diffusion on Finite Symmetric Groups | 2024-10-03 | ShowFinite symmetric groups |
|
DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization | 2024-10-03 | ShowOptimal trajectory design is computationally expensive for nonlinear and high-dimensional dynamical systems. The challenge arises from the non-convex nature of the optimization problem with multiple local optima, which usually requires a global search. Traditional numerical solvers struggle to find diverse solutions efficiently without appropriate initial guesses. In this paper, we introduce DiffuSolve, a general diffusion model-based solver for non-convex trajectory optimization. An expressive diffusion model is trained on pre-collected locally optimal solutions and efficiently samples initial guesses, which then warm-starts numerical solvers to fine-tune the feasibility and optimality. We also present DiffuSolve+, a novel constrained diffusion model with an additional loss in training that further reduces the problem constraint violations of diffusion samples. Experimental evaluations on three tasks verify the improved robustness, diversity, and a 2$\times$ to 11$\times$ increase in computational efficiency with our proposed method, which generalizes well to trajectory optimization problems of varying challenges. |
|
Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling | 2024-10-03 | ShowWe present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling. Our diffusion model takes in mock SZ and X-ray images as conditional observations, and generates realizations of corresponding gas and dark matter maps by sampling from a learned data posterior. We train and validate the performance of our model by using mock data from a hydrodynamical cosmological simulation. The model accurately reconstructs both the mean and spread of the radial density profiles in the spatial domain to within 5%, indicating that the model is able to distinguish between clusters of different sizes. In the spectral domain, the model achieves close-to-unity values for the bias and cross-correlation coefficients, indicating that the model can accurately probe cluster structures on both large and small scales. Our experiments demonstrate the ability of score models to learn a strong, nonlinear, and unbiased mapping between input observables and fundamental density distributions of galaxy clusters. These diffusion models can be further fine-tuned and generalized to not only take in additional observables as inputs, but also real observations and predict unknown density distributions of galaxy clusters. |
15 pa...15 pages, 9 figures, submitted to The Open Journal of Astrophysics |
Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models | 2024-10-03 | ShowRecent advancements in multimodal models highlight the value of rewritten captions for improving performance, yet key challenges remain. For example, while synthetic captions often provide superior quality and image-text alignment, it is not clear whether they can fully replace AltTexts: the role of synthetic captions and their interaction with original web-crawled AltTexts in pre-training is still not well understood. Moreover, different multimodal foundation models may have unique preferences for specific caption formats, but efforts to identify the optimal captions for each model remain limited. In this work, we propose a novel, controllable, and scalable captioning pipeline designed to generate diverse caption formats tailored to various multimodal models. By examining Short Synthetic Captions (SSC) towards Dense Synthetic Captions (DSC+) as case studies, we systematically explore their effects and interactions with AltTexts across models such as CLIP, multimodal LLMs, and diffusion models. Our findings reveal that a hybrid approach that keeps both synthetic captions and AltTexts can outperform the use of synthetic captions alone, improving both alignment and performance, with each model demonstrating preferences for particular caption formats. This comprehensive analysis provides valuable insights into optimizing captioning strategies, thereby advancing the pre-training of multimodal foundation models. |
CV/ML |
SteerDiff: Steering towards Safe Text-to-Image Diffusion Models | 2024-10-03 | ShowText-to-image (T2I) diffusion models have drawn attention for their ability to generate high-quality images with precise text alignment. However, these models can also be misused to produce inappropriate content. Existing safety measures, which typically rely on text classifiers or ControlNet-like approaches, are often insufficient. Traditional text classifiers rely on large-scale labeled datasets and can be easily bypassed by rephrasing. As diffusion models continue to scale, fine-tuning these safeguards becomes increasingly challenging and lacks flexibility. Recent red-teaming attack researches further underscore the need for a new paradigm to prevent the generation of inappropriate content. In this paper, we introduce SteerDiff, a lightweight adaptor module designed to act as an intermediary between user input and the diffusion model, ensuring that generated images adhere to ethical and safety standards with little to no impact on usability. SteerDiff identifies and manipulates inappropriate concepts within the text embedding space to guide the model away from harmful outputs. We conduct extensive experiments across various concept unlearning tasks to evaluate the effectiveness of our approach. Furthermore, we benchmark SteerDiff against multiple red-teaming strategies to assess its robustness. Finally, we explore the potential of SteerDiff for concept forgetting tasks, demonstrating its versatility in text-conditioned image generation. |
|
ControlAR: Controllable Image Generation with Autoregressive Models | 2024-10-03 | ShowAutoregressive (AR) models have reformulated image generation as next-token prediction, demonstrating remarkable potential and emerging as strong competitors to diffusion models. However, control-to-image generation, akin to ControlNet, remains largely unexplored within AR models. Although a natural approach, inspired by advancements in Large Language Models, is to tokenize control images into tokens and prefill them into the autoregressive model before decoding image tokens, it still falls short in generation quality compared to ControlNet and suffers from inefficiency. To this end, we introduce ControlAR, an efficient and effective framework for integrating spatial controls into autoregressive image generation models. Firstly, we explore control encoding for AR models and propose a lightweight control encoder to transform spatial inputs (e.g., canny edges or depth maps) into control tokens. Then ControlAR exploits the conditional decoding method to generate the next image token conditioned on the per-token fusion between control and image tokens, similar to positional encodings. Compared to prefilling tokens, using conditional decoding significantly strengthens the control capability of AR models but also maintains the model's efficiency. Furthermore, the proposed ControlAR surprisingly empowers AR models with arbitrary-resolution image generation via conditional decoding and specific controls. Extensive experiments can demonstrate the controllability of the proposed ControlAR for the autoregressive control-to-image generation across diverse inputs, including edges, depths, and segmentation masks. Furthermore, both quantitative and qualitative results indicate that ControlAR surpasses previous state-of-the-art controllable diffusion models, e.g., ControlNet++. Code, models, and demo will soon be available at https://github.com/hustvl/ControlAR. |
Prepr...Preprint. Work in progress |
GUD: Generation with Unified Diffusion | 2024-10-03 | ShowDiffusion generative models transform noise into data by inverting a process that progressively adds noise to data samples. Inspired by concepts from the renormalization group in physics, which analyzes systems across different scales, we revisit diffusion models by exploring three key design aspects: 1) the choice of representation in which the diffusion process operates (e.g. pixel-, PCA-, Fourier-, or wavelet-basis), 2) the prior distribution that data is transformed into during diffusion (e.g. Gaussian with covariance |
11 pages, 8 figures |
NECOMIMI: Neural-Cognitive Multimodal EEG-informed Image Generation with Diffusion Models | 2024-10-03 | ShowNECOMIMI (NEural-COgnitive MultImodal EEG-Informed Image Generation with Diffusion Models) introduces a novel framework for generating images directly from EEG signals using advanced diffusion models. Unlike previous works that focused solely on EEG-image classification through contrastive learning, NECOMIMI extends this task to image generation. The proposed NERV EEG encoder demonstrates state-of-the-art (SoTA) performance across multiple zero-shot classification tasks, including 2-way, 4-way, and 200-way, and achieves top results in our newly proposed Category-based Assessment Table (CAT) Score, which evaluates the quality of EEG-generated images based on semantic concepts. A key discovery of this work is that the model tends to generate abstract or generalized images, such as landscapes, rather than specific objects, highlighting the inherent challenges of translating noisy and low-resolution EEG data into detailed visual outputs. Additionally, we introduce the CAT Score as a new metric tailored for EEG-to-image evaluation and establish a benchmark on the ThingsEEG dataset. This study underscores the potential of EEG-to-image generation while revealing the complexities and challenges that remain in bridging neural activity with visual representation. |
|
Graph Diffusion Transformers for Multi-Conditional Molecular Generation | 2024-10-03 | ShowInverse molecular design with diffusion models holds great potential for advancements in material and drug discovery. Despite success in unconditional molecular generation, integrating multiple properties such as synthetic score and gas permeability as condition constraints into diffusion models remains unexplored. We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation. Graph DiT integrates an encoder to learn numerical and categorical property representations with the Transformer-based denoiser. Unlike previous graph diffusion models that add noise separately on the atoms and bonds in the forward diffusion process, Graph DiT is trained with a novel graph-dependent noise model for accurate estimation of graph-related noise in molecules. We extensively validate Graph DiT for multi-conditional polymer and small molecule generation. Results demonstrate the superiority of Graph DiT across nine metrics from distribution learning to condition control for molecular properties. A polymer inverse design task for gas separation with feedback from domain experts further demonstrates its practical utility. |
Accep...Accepted by NeurIPS 2024 (Oral). 21 pages, 11 figures, 8 tables |
BinaryDM: Accurate Weight Binarization for Efficient Diffusion Models | 2024-10-03 | ShowWith the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. This paper proposes a novel weight binarization approach for DMs, namely BinaryDM, pushing binarized DMs to be accurate and efficient by improving the representation and optimization. From the representation perspective, we present an Evolvable-Basis Binarizer (EBB) to enable a smooth evolution of DMs from full-precision to accurately binarized. EBB enhances information representation in the initial stage through the flexible combination of multiple binary bases and applies regularization to evolve into efficient single-basis binarization. The evolution only occurs in the head and tail of the DM architecture to retain the stability of training. From the optimization perspective, a Low-rank Representation Mimicking (LRM) is applied to assist the optimization of binarized DMs. The LRM mimics the representations of full-precision DMs in low-rank space, alleviating the direction ambiguity of the optimization process caused by fine-grained alignment. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. With 1-bit weight and 4-bit activation (W1A4), BinaryDM achieves as low as 7.74 FID and saves the performance from collapse (baseline FID 10.87). As the first binarization method for diffusion models, W1A4 BinaryDM achieves impressive 15.2x OPs and 29.2x model size savings, showcasing its substantial potential for edge deployment. |
The c...The code is available at https://github.com/Xingyu-Zheng/BinaryDM |
LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space | 2024-10-03 | ShowWith the emergence of diffusion models as the frontline of generative models, many researchers have proposed molecule generation techniques with conditional diffusion models. However, the unavoidable discreteness of a molecule makes it difficult for a diffusion model to connect raw data with highly complex conditions like natural language. To address this, we present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation. LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space, and a natural language-conditioned latent diffusion model. In particular, recognizing that multiple SMILES notations can represent the same molecule, we employ a contrastive learning strategy to extract feature space that is aware of the unique characteristics of the molecule structure. LDMol outperforms the existing baselines on the text-to-molecule generation benchmark, suggesting a potential for diffusion models can outperform autoregressive models in text data generation with a better choice of the latent domain. Furthermore, we show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing, demonstrating its versatility as a diffusion model. |
|
Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training | 2024-10-03 | ShowLearning a generalist embodied agent capable of completing multiple tasks poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets. In contrast, a vast amount of human videos exist, capturing intricate tasks and interactions with the physical world. Promising prospects arise for utilizing actionless human videos for pre-training and transferring the knowledge to facilitate robot policy learning through limited robot demonstrations. However, it remains a challenge due to the domain gap between humans and robots. Moreover, it is difficult to extract useful information representing the dynamic world from human videos, because of its noisy and multimodal data structure. In this paper, we introduce a novel framework to tackle these challenges, which leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos. We start by compressing both human and robot videos into unified video tokens. In the pre-training stage, we employ a discrete diffusion model with a mask-and-replace diffusion strategy to predict future video tokens in the latent space. In the fine-tuning stage, we harness the imagined future videos to guide low-level action learning with a limited set of robot data. Experiments demonstrate that our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches with superior performance. Our project website is available at https://video-diff.github.io/. |
Accep...Accepted by NeurIPS 2024. 24 pages |
Conditional Image Synthesis with Diffusion Models: A Survey | 2024-10-03 | ShowConditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, i.e., the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches in the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the essential sampling process. All discussions are centered around popular applications. Finally, we pinpoint some critical yet still open problems to be solved in the future and suggest some possible solutions. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models. |
|
Towards a Theoretical Understanding of Memorization in Diffusion Models | 2024-10-03 | ShowAs diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI), the study of their memorization of training data has attracted growing attention. Existing works in this direction aim to establish an understanding of whether or to what extent DPMs learn via memorization. Such an understanding is crucial for identifying potential risks of data leakage and copyright infringement in diffusion models and, more importantly, for trustworthy application of GenAI. Existing works revealed that conditional DPMs are more prone to training data memorization than unconditional DPMs, and the motivated data extraction methods are mostly for conditional DPMs. However, these understandings are primarily empirical, and extracting training data from unconditional models has been found to be extremely challenging. In this work, we provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence. Our theoretical analysis indicates that extracting data from unconditional models can also be effective by constructing a proper surrogate condition. Based on this result, we propose a novel data extraction method named \textbf{Surrogate condItional Data Extraction (SIDE)} that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs. Empirical results demonstrate that our SIDE can extract training data in challenging scenarios where previous methods fail, and it is, on average, over 50% more effective across different scales of the CelebA dataset. |
arXiv...arXiv admin note: text overlap with arXiv:2406.12752 |
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation | 2024-10-03 | ShowIn this paper, we propose SRIF, a novel Semantic shape Registration framework based on diffusion-based Image morphing and Flow estimation. More concretely, given a pair of extrinsically aligned shapes, we first render them from multi-views, and then utilize an image interpolation framework based on diffusion models to generate sequences of intermediate images between them. The images are later fed into a dynamic 3D Gaussian splatting framework, with which we reconstruct and post-process for intermediate point clouds respecting the image morphing processing. In the end, tailored for the above, we propose a novel registration module to estimate continuous normalizing flow, which deforms source shape consistently towards the target, with intermediate point clouds as weak guidance. Our key insight is to leverage large vision models (LVMs) to associate shapes and therefore obtain much richer semantic information on the relationship between shapes than the ad-hoc feature extraction and alignment. As a consequence, SRIF achieves high-quality dense correspondences on challenging shape pairs, but also delivers smooth, semantically meaningful interpolation in between. Empirical evidence justifies the effectiveness and superiority of our method as well as specific design choices. The code is released at https://github.com/rqhuang88/SRIF. |
Accep...Accepted as a conference paper of SIGGRAPH Asia 2024 |
Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models | 2024-10-03 | ShowClassifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance. |
|
Diffusion Meets Options: Hierarchical Generative Skill Composition for Temporally-Extended Tasks | 2024-10-03 | ShowSafe and successful deployment of robots requires not only the ability to generate complex plans but also the capacity to frequently replan and correct execution errors. This paper addresses the challenge of long-horizon trajectory planning under temporally extended objectives in a receding horizon manner. To this end, we propose DOPPLER, a data-driven hierarchical framework that generates and updates plans based on instruction specified by linear temporal logic (LTL). Our method decomposes temporal tasks into chain of options with hierarchical reinforcement learning from offline non-expert datasets. It leverages diffusion models to generate options with low-level actions. We devise a determinantal-guided posterior sampling technique during batch generation, which improves the speed and diversity of diffusion generated options, leading to more efficient querying. Experiments on robot navigation and manipulation tasks demonstrate that DOPPLER can generate sequences of trajectories that progressively satisfy the specified formulae for obstacle avoidance and sequential visitation. Demonstration videos are available online at: https://philiptheother.github.io/doppler/. |
|
Diff-BBO: Diffusion-Based Inverse Modeling for Black-Box Optimization | 2024-10-03 | ShowBlack-box optimization (BBO) aims to optimize an objective function by iteratively querying a black-box oracle in a sample-efficient way. While prior studies focus on forward approaches to learn surrogates for the unknown objective function, they struggle with steering clear of out-of-distribution and invalid inputs. Recently, inverse modeling approaches that map objective space to the design space with conditional diffusion models have demonstrated impressive capability in learning the data manifold. They have shown promising performance in offline BBO tasks. However, these approaches require a pre-collected dataset. How to design the acquisition function for inverse modeling to actively query new data remains an open question. In this work, we propose diffusion-based inverse modeling for black-box optimization (Diff-BBO), an inverse approach leveraging diffusion models for online BBO problem. Instead of proposing candidates in the design space, Diff-BBO employs a novel acquisition function Uncertainty-aware Exploration (UaE) to propose objective function values. Subsequently, we employ a conditional diffusion model to generate samples based on these proposed values within the design space. We demonstrate that using UaE results in optimal optimization outcomes, supported by both theoretical and empirical evidence. |
|
Text-to-Sticker: Style Tailoring Latent Diffusion Models for Human Expression | 2024-10-03 | ShowWe introduce Style Tailoring, a recipe to finetune Latent Diffusion Models (LDMs) in a distinct domain with high visual quality, prompt alignment and scene diversity. We choose sticker image generation as the target domain, as the images significantly differ from photorealistic samples typically generated by large-scale LDMs. We start with a competent text-to-image model, like Emu, and show that relying on prompt engineering with a photorealistic model to generate stickers leads to poor prompt alignment and scene diversity. To overcome these drawbacks, we first finetune Emu on millions of sticker-like images collected using weak supervision to elicit diversity. Next, we curate human-in-the-loop (HITL) Alignment and Style datasets from model generations, and finetune to improve prompt alignment and style alignment respectively. Sequential finetuning on these datasets poses a tradeoff between better style alignment and prompt alignment gains. To address this tradeoff, we propose a novel fine-tuning method called Style Tailoring, which jointly fits the content and style distribution and achieves best tradeoff. Evaluation results show our method improves visual quality by 14%, prompt alignment by 16.2% and scene diversity by 15.3%, compared to prompt engineering the base Emu model for stickers generation. |
10 pages, 5 figures |
Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis | 2024-10-03 | ShowDiffusion models have achieved great success in generating high-dimensional samples across various applications. While the theoretical guarantees for continuous-state diffusion models have been extensively studied, the convergence analysis of the discrete-state counterparts remains under-explored. In this paper, we study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework. We introduce a discrete-time sampling algorithm in the general state space |
31 pages, 1 figure |
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model | 2024-10-03 | ShowDiffusion models have obtained substantial progress in image-to-video generation. However, in this paper, we find that these models tend to generate videos with less motion than expected. We attribute this to the issue called conditional image leakage, where the image-to-video diffusion models (I2V-DMs) tend to over-rely on the conditional image at large time steps. We further address this challenge from both inference and training aspects. First, we propose to start the generation process from an earlier time step to avoid the unreliable large-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to bridge the training-inference gap. Second, we design a time-dependent noise distribution (TimeNoise) for the conditional image during training, applying higher noise levels at larger time steps to disrupt it and reduce the model's dependency on it. We validate these general strategies on various I2V-DMs on our collected open-domain image benchmark and the UCF101 dataset. Extensive results show that our methods outperform baselines by producing higher motion scores with lower errors while maintaining image alignment and temporal consistency, thereby yielding superior overall performance and enabling more accurate motion control. The project page: \url{https://cond-image-leak.github.io/}. |
NeurI...NeurIPS 2024. Project page: https://cond-image-leak.github.io/ |
Bootstrap3D: Improving Multi-view Diffusion Model with Synthetic Data | 2024-10-03 | ShowRecent years have witnessed remarkable progress in multi-view diffusion models for 3D content creation. However, there remains a significant gap in image quality and prompt-following ability compared to 2D diffusion models. A critical bottleneck is the scarcity of high-quality 3D objects with detailed captions. To address this challenge, we propose Bootstrap3D, a novel framework that automatically generates an arbitrary quantity of multi-view images to assist in training multi-view diffusion models. Specifically, we introduce a data generation pipeline that employs (1) 2D and video diffusion models to generate multi-view images based on constructed text prompts, and (2) our fine-tuned 3D-aware MV-LLaVA for filtering high-quality data and rewriting inaccurate captions. Leveraging this pipeline, we have generated 1 million high-quality synthetic multi-view images with dense descriptive captions to address the shortage of high-quality 3D data. Furthermore, we present a Training Timestep Reschedule (TTR) strategy that leverages the denoising process to learn multi-view consistency while maintaining the original 2D diffusion prior. Extensive experiments demonstrate that Bootstrap3D can generate high-quality multi-view images with superior aesthetic quality, image-text alignment, and maintained view consistency. |
Proje...Project Page: https://sunzey.github.io/Bootstrap3D/ |
I4VGen: Image as Free Stepping Stone for Text-to-Video Generation | 2024-10-03 | ShowText-to-video generation has trailed behind text-to-image generation in terms of quality and diversity, primarily due to the inherent complexities of spatio-temporal modeling and the limited availability of video-text datasets. Recent text-to-video diffusion models employ the image as an intermediate step, significantly enhancing overall performance but incurring high training costs. In this paper, we present I4VGen, a novel video diffusion inference pipeline to leverage advanced image techniques to enhance pre-trained text-to-video diffusion models, which requires no additional training. Instead of the vanilla text-to-video inference pipeline, I4VGen consists of two stages: anchor image synthesis and anchor image-augmented text-to-video synthesis. Correspondingly, a simple yet effective generation-selection strategy is employed to achieve visually-realistic and semantically-faithful anchor image, and an innovative noise-invariant video score distillation sampling (NI-VSDS) is developed to animate the image to a dynamic video by distilling motion knowledge from video diffusion models, followed by a video regeneration process to refine the video. Extensive experiments show that the proposed method produces videos with higher visual realism and textual fidelity. Furthermore, I4VGen also supports being seamlessly integrated into existing image-to-video diffusion models, thereby improving overall video quality. |
Proje...Project page: https://xiefan-guo.github.io/i4vgen |
GALD-SE: Guided Anisotropic Lightweight Diffusion for Efficient Speech Enhancement | 2024-10-03 | ShowSpeech enhancement is designed to enhance the intelligibility and quality of speech across diverse noise conditions. Recently, diffusion model has gained lots of attention in speech enhancement area, achieving competitive results. Current diffusion-based methods blur the signal with isotropic Gaussian noise and recover clean speech from the prior. However, these methods often suffer from a substantial computational burden. We argue that the inefficiency partially stems from the oversight that speech enhancement is not purely a generative task; it primarily involves noise reduction and completion of missing information, while the clean clues in the original mixture do not need to be regenerated. In this paper, we propose a method that introduces noise with anisotropic guidance during the diffusion process, allowing the neural network to preserve clean clues within noisy recordings. This approach substantially reduces computational complexity while exhibiting robustness against various forms of noise interference and speech distortion. Experiments demonstrate that the proposed method achieves state-of-the-art results with only approximately 4.5 million parameters, a number significantly lower than that required by other diffusion methods. This effectively narrows the model size disparity between diffusion-based and predictive speech enhancement approaches. Additionally, the proposed method performs well in very noisy scenarios, demonstrating its potential for applications in highly challenging environments. |
We ma...We make reassessment and update the author list. All authors have approved this version of the manuscript |
Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding | 2024-10-03 | ShowDiffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (\textit{e.g.}, classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (\textit{e.g.}, classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at \href{https://github.com/masa-ue/SVDD}{https://github.com/masa-ue/SVDD}. |
The c...The code is available at https://github.com/masa-ue/SVDD |
Fair Sampling in Diffusion Models through Switching Mechanism | 2024-10-03 | ShowDiffusion models have shown their effectiveness in generation tasks by well-approximating the underlying probability distribution. However, diffusion models are known to suffer from an amplified inherent bias from the training data in terms of fairness. While the sampling process of diffusion models can be controlled by conditional guidance, previous works have attempted to find empirical guidance to achieve quantitative fairness. To address this limitation, we propose a fairness-aware sampling method called \textit{attribute switching} mechanism for diffusion models. Without additional training, the proposed sampling can obfuscate sensitive attributes in generated data without relying on classifiers. We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects: (i) the generation of fair data and (ii) the preservation of the utility of the generated data. |
AAAI 2024 |
Rethinking and Defending Protective Perturbation in Personalized Diffusion Models | 2024-10-03 | ShowPersonalized diffusion models (PDMs) have become prominent for adapting pretrained text-to-image models to generate images of specific subjects using minimal training data. However, PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets. These vulnerabilities are exploited to create protective perturbations that prevent unauthorized image generation. Existing purification methods attempt to mitigate this issue but often over-purify images, resulting in information loss. In this work, we conduct an in-depth analysis of the fine-tuning process of PDMs through the lens of shortcut learning. We hypothesize and empirically demonstrate that adversarial perturbations induce a latent-space misalignment between images and their text prompts in the CLIP embedding space. This misalignment causes the model to erroneously associate noisy patterns with unique identifiers during fine-tuning, resulting in poor generalization. Based on these insights, we propose a systematic defense framework that includes data purification and contrastive decoupling learning. We first employ off-the-shelf image restoration techniques to realign images with their original semantic meanings in latent space. Then, we introduce contrastive decoupling learning with noise tokens to decouple the learning of personalized concepts from spurious noise patterns. Our study not only uncovers fundamental shortcut learning vulnerabilities in PDMs but also provides a comprehensive evaluation framework for developing stronger protection. Our extensive evaluation demonstrates its superiority over existing purification methods and stronger robustness against adaptive perturbation. |
Our c...Our code is available at https://github.com/liuyixin-louis/DiffShortcut |
Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting | 2024-10-03 | ShowForecasting faithful trajectories of multivariate time series from practical scopes is essential for reasonable decision-making. Recent methods majorly tailor generative conditional diffusion models to estimate the target temporal predictive distribution. However, it remains an obstacle to enhance the exploitation efficiency of given implicit temporal predictive information to bolster conditional diffusion learning. To this end, we propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM to achieve desirable Multivariate probabilistic forecasting, obviating the need for curated temporal conditioning inductive biases. In detail, we first design a channel-centric conditional denoising network to manage intra-variate variations and cross-variate correlations, which can lead to scalability on diverse prediction horizons and channel numbers. Then, we devise an ad-hoc denoising-based temporal contrastive learning to explicitly amplify the predictive mutual information between past observations and future forecasts. It can coherently complement naive step-wise denoising diffusion training and improve the forecasting accuracy and generality on unknown test time series. Besides, we offer theoretic insights on the benefits of such auxiliary contrastive training refinement from both neural mutual information and temporal distribution generalization aspects. The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters over a comprehensive benchmark, with best MSE and CRPS outcomes on |
|
SoundMorpher: Perceptually-Uniform Sound Morphing with Diffusion Model | 2024-10-03 | ShowWe present SoundMorpher, a sound morphing method that generates perceptually uniform morphing trajectories using a diffusion model. Traditional sound morphing methods models the intractable relationship between morph factor and perception of the stimuli for resulting sounds under a linear assumption, which oversimplifies the complex nature of sound perception and limits their morph quality. In contrast, SoundMorpher explores an explicit proportional mapping between the morph factor and the perceptual stimuli of morphed sounds based on Mel-spectrogram. This approach enables smoother transitions between intermediate sounds and ensures perceptually consistent transformations, which can be easily extended to diverse sound morphing tasks. Furthermore, we present a set of quantitative metrics to comprehensively assess sound morphing systems based on three objective criteria, namely, correspondence, perceptual intermediateness, and smoothness. We provide extensive experiments to demonstrate the effectiveness and versatility of SoundMorpher in real-world scenarios, highlighting its potential impact on various applications such as creative music composition, film post-production and interactive audio technologies. |
|
MDSGen: Fast and Efficient Masked Diffusion Temporal-Aware Transformers for Open-Domain Sound Generation | 2024-10-03 | ShowWe introduce MDSGen, a novel framework for vision-guided open-domain sound generation optimized for model parameter size, memory consumption, and inference speed. This framework incorporates two key innovations: (1) a redundant video feature removal module that filters out unnecessary visual information, and (2) a temporal-aware masking strategy that leverages temporal context for enhanced audio generation accuracy. In contrast to existing resource-heavy Unet-based models, MDSGen employs denoising masked diffusion transformers, facilitating efficient generation without reliance on pre-trained diffusion models. Evaluated on the benchmark VGGSound dataset, our smallest model (5M parameters) achieves 97.9% alignment accuracy, using 172x fewer parameters, 371% less memory, and offering 36x faster inference than the current 860M-parameter state-of-the-art model (93.9% accuracy). The larger model (131M parameters) reaches nearly 99% accuracy while requiring 6.5x fewer parameters. These results highlight the scalability and effectiveness of our approach. |
21 pages, 16 figures |
SC-CDM: Enhancing Quality of Image Semantic Communication with a Compact Diffusion Model | 2024-10-03 | ShowSemantic Communication (SC) is an emerging technology that has attracted much attention in the sixth-generation (6G) mobile communication systems. However, few literature has fully considered the perceptual quality of the reconstructed image. To solve this problem, we propose a generative SC for wireless image transmission (denoted as SC-CDM). This approach leverages compact diffusion models to improve the fidelity and semantic accuracy of the images reconstructed after transmission, ensuring that the essential content is preserved even in bandwidth-constrained environments. Specifically, we aim to redesign the swin Transformer as a new backbone for efficient semantic feature extraction and compression. Next, the receiver integrates the slim prior and image reconstruction networks. Compared to traditional Diffusion Models (DMs), it leverages DMs' robust distribution mapping capability to generate a compact condition vector, guiding image recovery, thus enhancing the perceptual details of the reconstructed images. Finally, a series of evaluation and ablation studies are conducted to validate the effectiveness and robustness of the proposed algorithm and further increase the Peak Signal-to-Noise Ratio (PSNR) by over 17% on top of CNN-based DeepJSCC. |
arXiv...arXiv admin note: text overlap with arXiv:2408.05112 |
EDADepth: Enhanced Data Augmentation for Monocular Depth Estimation | 2024-10-03 | ShowDue to their text-to-image synthesis feature, diffusion models have recently seen a rise in visual perception tasks, such as depth estimation. The lack of good-quality datasets makes the extraction of a fine-grain semantic context challenging for the diffusion models. The semantic context with fewer details further worsens the process of creating effective text embeddings that will be used as input for diffusion models. In this paper, we propose a novel EDADepth, an enhanced data augmentation method to estimate monocular depth without using additional training data. We use Swin2SR, a super-resolution model, to enhance the quality of input images. We employ the BEiT pre-trained semantic segmentation model for better extraction of text embeddings. We use BLIP-2 tokenizer to generate tokens from these text embeddings. The novelty of our approach is the introduction of Swin2SR, the BEiT model, and the BLIP-2 tokenizer in the diffusion-based pipeline for the monocular depth estimation. Our model achieves state-of-the-art results (SOTA) on the delta3 metric on NYUv2 and KITTI datasets. It also achieves results comparable to those of the SOTA models in the RMSE and REL metrics. Finally, we also show improvements in the visualization of the estimated depth compared to the SOTA diffusion-based monocular depth estimation models. Code: https://github.com/edadepthmde/EDADepth_ICMLA. |
|
MAGID: An Automated Pipeline for Generating Synthetic Multi-modal Datasets | 2024-10-03 | ShowDevelopment of multimodal interactive systems is hindered by the lack of rich, multimodal (text, images) conversational data, which is needed in large quantities for LLMs. Previous approaches augment textual dialogues with retrieved images, posing privacy, diversity, and quality constraints. In this work, we introduce Multimodal Augmented Generative Images Dialogues (MAGID), a framework to augment text-only dialogues with diverse and high-quality images. Subsequently, a diffusion model is applied to craft corresponding images, ensuring alignment with the identified text. Finally, MAGID incorporates an innovative feedback loop between an image description generation module (textual LLM) and image quality modules (addressing aesthetics, image-text matching, and safety), that work in tandem to generate high-quality and multi-modal dialogues. We compare MAGID to other SOTA baselines on three dialogue datasets, using automated and human evaluation. Our results show that MAGID is comparable to or better than baselines, with significant improvements in human evaluation, especially against retrieval baselines where the image database is small. |
|
Augmenting Offline Reinforcement Learning with State-only Interactions | 2024-10-02 | ShowBatch offline data have been shown considerably beneficial for reinforcement learning. Their benefit is further amplified by upsampling with generative models. In this paper, we consider a novel opportunity where interaction with environment is feasible, but only restricted to observations, i.e., \textit{no reward} feedback is available. This setting is broadly applicable, as simulators or even real cyber-physical systems are often accessible, while in contrast reward is often difficult or expensive to obtain. As a result, the learner must make good sense of the offline data to synthesize an efficient scheme of querying the transition of state. Our method first leverages online interactions to generate high-return trajectories via conditional diffusion models. They are then blended with the original offline trajectories through a stitching algorithm, and the resulting augmented data can be applied generically to downstream reinforcement learners. Superior empirical performance is demonstrated over state-of-the-art data augmentation methods that are extended to utilize state-only interactions. |
|
Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction | 2024-10-02 | ShowLeveraging the visual priors of pre-trained text-to-image diffusion models offers a promising solution to enhance zero-shot generalization in dense prediction tasks. However, existing methods often uncritically use the original diffusion formulation, which may not be optimal due to the fundamental differences between dense prediction and image generation. In this paper, we provide a systemic analysis of the diffusion formulation for the dense prediction, focusing on both quality and efficiency. And we find that the original parameterization type for image generation, which learns to predict noise, is harmful for dense prediction; the multi-step noising/denoising diffusion process is also unnecessary and challenging to optimize. Based on these insights, we introduce Lotus, a diffusion-based visual foundation model with a simple yet effective adaptation protocol for dense prediction. Specifically, Lotus is trained to directly predict annotations instead of noise, thereby avoiding harmful variance. We also reformulate the diffusion process into a single-step procedure, simplifying optimization and significantly boosting inference speed. Additionally, we introduce a novel tuning strategy called detail preserver, which achieves more accurate and fine-grained predictions. Without scaling up the training data or model capacity, Lotus achieves SoTA performance in zero-shot depth and normal estimation across various datasets. It also enhances efficiency, being significantly faster than most existing diffusion-based methods. Lotus' superior quality and efficiency also enable a wide range of practical applications, such as joint estimation, single/multi-view 3D reconstruction, etc. Project page: https://lotus3d.github.io/. |
The f...The first two authors contributed equally. Project page: https://lotus3d.github.io/ |
Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data | 2024-10-02 | ShowWe present Synthio, a novel approach for augmenting small-scale audio classification datasets with synthetic data. Our goal is to improve audio classification accuracy with limited labeled data. Traditional data augmentation techniques, which apply artificial transformations (e.g., adding random noise or masking segments), struggle to create data that captures the true diversity present in real-world audios. To address this shortcoming, we propose to augment the dataset with synthetic audio generated from text-to-audio (T2A) diffusion models. However, synthesizing effective augmentations is challenging because not only should the generated data be acoustically consistent with the underlying small-scale dataset, but they should also have sufficient compositional diversity. To overcome the first challenge, we align the generations of the T2A model with the small-scale dataset using preference optimization. This ensures that the acoustic characteristics of the generated data remain consistent with the small-scale dataset. To address the second challenge, we propose a novel caption generation technique that leverages the reasoning capabilities of Large Language Models to (1) generate diverse and meaningful audio captions and (2) iteratively refine their quality. The generated captions are then used to prompt the aligned T2A model. We extensively evaluate Synthio on ten datasets and four simulated limited-data settings. Results indicate our method consistently outperforms all baselines by 0.1%-39% using a T2A model trained only on weakly-captioned AudioSet. |
Code ...Code and Checkpoints will be soon available here: https://github.com/Sreyan88/Synthio |
Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models | 2024-10-02 | ShowTeaching text-to-image models to be creative involves using style ambiguity loss. In this work, we explore using the style ambiguity training objective, used to approximate creativity, on a diffusion model. We then experiment with forms of style ambiguity loss that do not require training a classifier or a labeled dataset, and find that the models trained with style ambiguity loss can generate better images than the baseline diffusion models and GANs. Code is available at https://github.com/jamesBaker361/clipcreate. |
arXiv...arXiv admin note: substantial text overlap with arXiv:2407.12009 |
3M-Diffusion: Latent Multi-Modal Diffusion for Language-Guided Molecular Structure Generation | 2024-10-02 | ShowGenerating molecular structures with desired properties is a critical task with broad applications in drug discovery and materials design. We propose 3M-Diffusion, a novel multi-modal molecular graph generation method, to generate diverse, ideally novel molecular structures with desired properties. 3M-Diffusion encodes molecular graphs into a graph latent space which it then aligns with the text space learned by encoder-based LLMs from textual descriptions. It then reconstructs the molecular structure and atomic attributes based on the given text descriptions using the molecule decoder. It then learns a probabilistic mapping from the text space to the latent molecular graph space using a diffusion model. The results of our extensive experiments on several datasets demonstrate that 3M-Diffusion can generate high-quality, novel and diverse molecular graphs that semantically match the textual description provided. |
|
Discrete Copula Diffusion | 2024-10-02 | ShowDiscrete diffusion models have recently shown significant progress in modeling complex data, such as natural languages and DNA sequences. However, unlike diffusion models for continuous data, which can generate high-quality samples in just a few denoising steps, modern discrete diffusion models still require hundreds or even thousands of denoising steps to perform well. In this paper, we identify a fundamental limitation that prevents discrete diffusion models from achieving strong performance with fewer steps -- they fail to capture dependencies between output variables at each denoising step. To address this issue, we provide a formal explanation and introduce a general approach to supplement the missing dependency information by incorporating another deep generative model, termed the copula model. Our method does not require fine-tuning either the diffusion model or the copula model, yet it enables high-quality sample generation with significantly fewer denoising steps. When we apply this approach to autoregressive copula models, the combined model outperforms both models individually in unconditional and conditional text generation. Specifically, the hybrid model achieves better (un)conditional text generation using 8 to 32 times fewer denoising steps than the diffusion model alone. In addition to presenting an effective discrete diffusion generation algorithm, this paper emphasizes the importance of modeling inter-variable dependencies in discrete diffusion. |
|
Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples | 2024-10-02 | ShowDiffusion models are mainly studied on image data. However, non-image data (e.g., tabular data) are also prevalent in real applications and tend to be noisy due to some inevitable factors in the stage of data collection, degrading the generation quality of diffusion models. In this paper, we consider a novel problem setting where every collected sample is paired with a vector indicating the data quality: risk vector. This setting applies to many scenarios involving noisy data and we propose risk-sensitive SDE, a type of stochastic differential equation (SDE) parameterized by the risk vector, to address it. With some proper coefficients, risk-sensitive SDE can minimize the negative effect of noisy samples on the optimization of diffusion models. We conduct systematic studies for both Gaussian and non-Gaussian noise distributions, providing analytical forms of risk-sensitive SDE. To verify the effectiveness of our method, we have conducted extensive experiments on multiple tabular and time-series datasets, showing that risk-sensitive SDE permits a robust optimization of diffusion models with noisy samples and significantly outperforms previous baselines. |
Paper under review |
A Spark of Vision-Language Intelligence: 2-Dimensional Autoregressive Transformer for Efficient Finegrained Image Generation | 2024-10-02 | ShowThis work tackles the information loss bottleneck of vector-quantization (VQ) autoregressive image generation by introducing a novel model architecture called the 2-Dimensional Autoregression (DnD) Transformer. The DnD-Transformer predicts more codes for an image by introducing a new autoregression direction, \textit{model depth}, along with the sequence length direction. Compared to traditional 1D autoregression and previous work utilizing similar 2D image decomposition such as RQ-Transformer, the DnD-Transformer is an end-to-end model that can generate higher quality images with the same backbone model size and sequence length, opening a new optimization perspective for autoregressive image generation. Furthermore, our experiments reveal that the DnD-Transformer's potential extends beyond generating natural images. It can even generate images with rich text and graphical elements in a self-supervised manner, demonstrating an understanding of these combined modalities. This has not been previously demonstrated for popular vision generative models such as diffusion models, showing a spark of vision-language intelligence when trained solely on images. Code, datasets and models are open at https://github.com/chenllliang/DnD-Transformer. |
25 pa...25 pages, 20 figures, code is open at https://github.com/chenllliang/DnD-Transformer |
FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Clothing Images | 2024-10-02 | ShowWe introduce FabricDiffusion, a method for transferring fabric textures from a single clothing image to 3D garments of arbitrary shapes. Existing approaches typically synthesize textures on the garment surface through 2D-to-3D texture mapping or depth-aware inpainting via generative models. Unfortunately, these methods often struggle to capture and preserve texture details, particularly due to challenging occlusions, distortions, or poses in the input image. Inspired by the observation that in the fashion industry, most garments are constructed by stitching sewing patterns with flat, repeatable textures, we cast the task of clothing texture transfer as extracting distortion-free, tileable texture materials that are subsequently mapped onto the UV space of the garment. Building upon this insight, we train a denoising diffusion model with a large-scale synthetic dataset to rectify distortions in the input texture image. This process yields a flat texture map that enables a tight coupling with existing Physically-Based Rendering (PBR) material generation pipelines, allowing for realistic relighting of the garment under various lighting conditions. We show that FabricDiffusion can transfer various features from a single clothing image including texture patterns, material properties, and detailed prints and logos. Extensive experiments demonstrate that our model significantly outperforms state-to-the-art methods on both synthetic data and real-world, in-the-wild clothing images while generalizing to unseen textures and garment shapes. |
Accep...Accepted to SIGGRAPH Asia 2024. Project page: https://humansensinglab.github.io/fabric-diffusion |
Repulsive Latent Score Distillation for Solving Inverse Problems | 2024-10-02 | ShowScore Distillation Sampling (SDS) has been pivotal for leveraging pre-trained diffusion models in downstream tasks such as inverse problems, but it faces two major challenges: |
|
Dynamical-generative downscaling of climate model ensembles | 2024-10-02 | ShowRegional high-resolution climate projections are crucial for many applications, such as agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling, the state-of-the-art method to produce localized future climate information, involves running a regional climate model (RCM) driven by an Earth System Model (ESM), but it is too computationally expensive to apply to large climate projection ensembles. We propose a novel approach combining dynamical downscaling with generative artificial intelligence to reduce the cost and improve the uncertainty estimates of downscaled climate projections. In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale. This approach leverages the generalizability of physics-based models and the sampling efficiency of diffusion models, enabling the downscaling of large multi-model ensembles. We evaluate our method against dynamically-downscaled climate projections from the CMIP6 ensemble. Our results demonstrate its ability to provide more accurate uncertainty bounds on future regional climate than alternatives such as dynamical downscaling of smaller ensembles, or traditional empirical statistical downscaling methods. We also show that dynamical-generative downscaling results in significantly lower errors than bias correction and spatial disaggregation (BCSD), and captures more accurately the spectra and multivariate correlations of meteorological fields. These characteristics make the dynamical-generative framework a flexible, accurate, and efficient way to downscale large ensembles of climate projections, currently out of reach for pure dynamical downscaling. |
|
ImageFolder: Autoregressive Image Generation with Folded Tokens | 2024-10-02 | ShowImage tokenizers are crucial for visual generative models, e.g., diffusion models (DMs) and autoregressive (AR) models, as they construct the latent representation for modeling. Increasing token length is a common approach to improve the image reconstruction quality. However, tokenizers with longer token lengths are not guaranteed to achieve better generation quality. There exists a trade-off between reconstruction and generation quality regarding token length. In this paper, we investigate the impact of token length on both image reconstruction and generation and provide a flexible solution to the tradeoff. We propose ImageFolder, a semantic tokenizer that provides spatially aligned image tokens that can be folded during autoregressive modeling to improve both generation efficiency and quality. To enhance the representative capability without increasing token length, we leverage dual-branch product quantization to capture different contexts of images. Specifically, semantic regularization is introduced in one branch to encourage compacted semantic information while another branch is designed to capture the remaining pixel-level details. Extensive experiments demonstrate the superior quality of image generation and shorter token length with ImageFolder tokenizer. |
Code:... |
VitaGlyph: Vitalizing Artistic Typography with Flexible Dual-branch Diffusion Models | 2024-10-02 | ShowArtistic typography is a technique to visualize the meaning of input character in an imaginable and readable manner. With powerful text-to-image diffusion models, existing methods directly design the overall geometry and texture of input character, making it challenging to ensure both creativity and legibility. In this paper, we introduce a dual-branch and training-free method, namely VitaGlyph, enabling flexible artistic typography along with controllable geometry change to maintain the readability. The key insight of VitaGlyph is to treat input character as a scene composed of Subject and Surrounding, followed by rendering them under varying degrees of geometry transformation. The subject flexibly expresses the essential concept of input character, while the surrounding enriches relevant background without altering the shape. Specifically, we implement VitaGlyph through a three-phase framework: (i) Knowledge Acquisition leverages large language models to design text descriptions of subject and surrounding. (ii) Regional decomposition detects the part that most matches the subject description and divides input glyph image into subject and surrounding regions. (iii) Typography Stylization firstly refines the structure of subject region via Semantic Typography, and then separately renders the textures of Subject and Surrounding regions through Controllable Compositional Generation. Experimental results demonstrate that VitaGlyph not only achieves better artistry and readability, but also manages to depict multiple customize concepts, facilitating more creative and pleasing artistic typography generation. Our code will be made publicly at https://github.com/Carlofkl/VitaGlyph. |
|
Latent Diffusion Models for Controllable RNA Sequence Generation | 2024-10-02 | ShowThis work presents RNAdiffusion, a latent diffusion model for generating and optimizing discrete RNA sequences of variable lengths. RNA is a key intermediary between DNA and protein, exhibiting high sequence diversity and complex three-dimensional structures to support a wide range of functions. We utilize pretrained BERT-type models to encode raw RNA sequences into token-level, biologically meaningful representations. A Query Transformer is employed to compress such representations into a set of fixed-length latent vectors, with an autoregressive decoder trained to reconstruct RNA sequences from these latent variables. We then develop a continuous diffusion model within this latent space. To enable optimization, we integrate the gradients of reward models--surrogates for RNA functional properties--into the backward diffusion process, thereby generating RNAs with high reward scores. Empirical results confirm that RNAdiffusion generates non-coding RNAs that align with natural distributions across various biological metrics. Further, we fine-tune the diffusion model on mRNA 5' untranslated regions (5'-UTRs) and optimize sequences for high translation efficiencies. Our guided diffusion model effectively generates diverse 5'-UTRs with high Mean Ribosome Loading (MRL) and Translation Efficiency (TE), outperforming baselines in balancing rewards and structural stability trade-off. Our findings hold potential for advancing RNA sequence-function research and therapeutic RNA design. |
|
Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective | 2024-10-02 | ShowDiffusion-Based Purification (DBP) has emerged as an effective defense mechanism against adversarial attacks. The efficacy of DBP has been attributed to the forward diffusion process, which narrows the distribution gap between clean and adversarial images through the addition of Gaussian noise. Although this explanation has some theoretical support, the significance of its contribution to robustness remains unclear. In this paper, we argue that the inherent stochasticity in the DBP process is the primary driver of its robustness. To explore this, we introduce a novel Deterministic White-Box (DW-box) evaluation protocol to assess robustness in the absence of stochasticity and to analyze the attack trajectories and loss landscapes. Our findings suggest that DBP models primarily leverage stochasticity to evade effective attack directions, and their ability to purify adversarial perturbations can be weak. To further enhance the robustness of DBP models, we introduce Adversarial Denoising Diffusion Training (ADDT), which incorporates classifier-guided adversarial perturbations into diffusion training, thereby strengthening the DBP models' ability to purify adversarial perturbations. Additionally, we propose Rank-Based Gaussian Mapping (RBGM) to make perturbations more compatible with diffusion models. Experimental results validate the effectiveness of ADDT. In conclusion, our study suggests that future research on DBP can benefit from the perspective of decoupling the stochasticity-based and purification-based robustness. |
|
Image Copy Detection for Diffusion Models | 2024-10-02 | ShowImages produced by diffusion models are increasingly popular in digital artwork and visual marketing. However, such generated images might replicate content from existing ones and pose the challenge of content originality. Existing Image Copy Detection (ICD) models, though accurate in detecting hand-crafted replicas, overlook the challenge from diffusion models. This motivates us to introduce ICDiff, the first ICD specialized for diffusion models. To this end, we construct a Diffusion-Replication (D-Rep) dataset and correspondingly propose a novel deep embedding method. D-Rep uses a state-of-the-art diffusion model (Stable Diffusion V1.5) to generate 40, 000 image-replica pairs, which are manually annotated into 6 replication levels ranging from 0 (no replication) to 5 (total replication). Our method, PDF-Embedding, transforms the replication level of each image-replica pair into a probability density function (PDF) as the supervision signal. The intuition is that the probability of neighboring replication levels should be continuous and smooth. Experimental results show that PDF-Embedding surpasses protocol-driven methods and non-PDF choices on the D-Rep test set. Moreover, by utilizing PDF-Embedding, we find that the replication ratios of well-known diffusion models against an open-source gallery range from 10% to 20%. The project is publicly available at https://icdiff.github.io/. |
Accep...Accepted by NeurIPS 2024 |
KnobGen: Controlling the Sophistication of Artwork in Sketch-Based Diffusion Models | 2024-10-02 | ShowRecent advances in diffusion models have significantly improved text-to-image (T2I) generation, but they often struggle to balance fine-grained precision with high-level control. Methods like ControlNet and T2I-Adapter excel at following sketches by seasoned artists but tend to be overly rigid, replicating unintentional flaws in sketches from novice users. Meanwhile, coarse-grained methods, such as sketch-based abstraction frameworks, offer more accessible input handling but lack the precise control needed for detailed, professional use. To address these limitations, we propose KnobGen, a dual-pathway framework that democratizes sketch-based image generation by seamlessly adapting to varying levels of sketch complexity and user skill. KnobGen uses a Coarse-Grained Controller (CGC) module for high-level semantics and a Fine-Grained Controller (FGC) module for detailed refinement. The relative strength of these two modules can be adjusted through our knob inference mechanism to align with the user's specific needs. These mechanisms ensure that KnobGen can flexibly generate images from both novice sketches and those drawn by seasoned artists. This maintains control over the final output while preserving the natural appearance of the image, as evidenced on the MultiGen-20M dataset and a newly collected sketch dataset. |
|
MM-LDM: Multi-Modal Latent Diffusion Model for Sounding Video Generation | 2024-10-02 | ShowSounding Video Generation (SVG) is an audio-video joint generation task challenged by high-dimensional signal spaces, distinct data formats, and different patterns of content information. To address these issues, we introduce a novel multi-modal latent diffusion model (MM-LDM) for the SVG task. We first unify the representation of audio and video data by converting them into a single or a couple of images. Then, we introduce a hierarchical multi-modal autoencoder that constructs a low-level perceptual latent space for each modality and a shared high-level semantic feature space. The former space is perceptually equivalent to the raw signal space of each modality but drastically reduces signal dimensions. The latter space serves to bridge the information gap between modalities and provides more insightful cross-modal guidance. Our proposed method achieves new state-of-the-art results with significant quality and efficiency gains. Specifically, our method achieves a comprehensive improvement on all evaluation metrics and a faster training and sampling speed on Landscape and AIST++ datasets. Moreover, we explore its performance on open-domain sounding video generation, long sounding video generation, audio continuation, video continuation, and conditional single-modal generation tasks for a comprehensive evaluation, where our MM-LDM demonstrates exciting adaptability and generalization ability. |
Accep...Accepted by ACM MM 2024 |
Diffusion$^2$: Dynamic 3D Content Generation via Score Composition of Video and Multi-view Diffusion Models | 2024-10-02 | ShowRecent advancements in 3D generation are predominantly propelled by improvements in 3D-aware image diffusion models. These models are pretrained on Internet-scale image data and fine-tuned on massive 3D data, offering the capability of producing highly consistent multi-view images. However, due to the scarcity of synchronized multi-view video data, it remains challenging to adapt this paradigm to 4D generation directly. Despite that, the available video and 3D data are adequate for training video and multi-view diffusion models separately that can provide satisfactory dynamic and geometric priors respectively. To take advantage of both, this paper presents Diffusion$^2$, a novel framework for dynamic 3D content creation that reconciles the knowledge about geometric consistency and temporal smoothness from these models to directly sample dense multi-view multi-frame images which can be employed to optimize continuous 4D representation. Specifically, we design a simple yet effective denoising strategy via score composition of pretrained video and multi-view diffusion models based on the probability structure of the target image array. To alleviate the potential conflicts between two heterogeneous scores, we further introduce variance-reducing sampling via interpolated steps, facilitating smooth and stable generation. Owing to the high parallelism of the proposed image generation process and the efficiency of the modern 4D reconstruction pipeline, our framework can generate 4D content within few minutes. Notably, our method circumvents the reliance on expensive and hard-to-scale 4D data, thereby having the potential to benefit from the scaling of the foundation video and multi-view diffusion models. Extensive experiments demonstrate the efficacy of our proposed framework in generating highly seamless and consistent 4D assets under various types of conditions. |
Technical Report |
Title | Date | Abstract | Comment |
---|---|---|---|
Unraveling Cross-Modality Knowledge Conflict in Large Vision-Language Models | 2024-10-04 | ShowLarge Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs. However, these models are prone to parametric knowledge conflicts, which arise from inconsistencies of represented knowledge between their vision and language components. In this paper, we formally define the problem of |
Websi...Website: https://darthzhu.github.io/cross-modality-knowledge-conflict/ |
LeLaN: Learning A Language-Conditioned Navigation Policy from In-the-Wild Videos | 2024-10-04 | ShowThe world is filled with a wide variety of objects. For robots to be useful, they need the ability to find arbitrary objects described by people. In this paper, we present LeLaN(Learning Language-conditioned Navigation policy), a novel approach that consumes unlabeled, action-free egocentric data to learn scalable, language-conditioned object navigation. Our framework, LeLaN leverages the semantic knowledge of large vision-language models, as well as robotic foundation models, to label in-the-wild data from a variety of indoor and outdoor environments. We label over 130 hours of data collected in real-world indoor and outdoor environments, including robot observations, YouTube video tours, and human walking data. Extensive experiments with over 1000 real-world trials show that our approach enables training a policy from unlabeled action-free videos that outperforms state-of-the-art robot navigation methods, while being capable of inference at 4 times their speed on edge compute. We open-source our models, datasets and provide supplementary videos on our project page (https://learning-language-navigation.github.io/). |
23 pa...23 pages, 9 figures, 5 tables, Conference on Robot Learning 2024 |
An X-Ray Is Worth 15 Features: Sparse Autoencoders for Interpretable Radiology Report Generation | 2024-10-04 | ShowRadiological services are experiencing unprecedented demand, leading to increased interest in automating radiology report generation. Existing Vision-Language Models (VLMs) suffer from hallucinations, lack interpretability, and require expensive fine-tuning. We introduce SAE-Rad, which uses sparse autoencoders (SAEs) to decompose latent representations from a pre-trained vision transformer into human-interpretable features. Our hybrid architecture combines state-of-the-art SAE advancements, achieving accurate latent reconstructions while maintaining sparsity. Using an off-the-shelf language model, we distil ground-truth reports into radiological descriptions for each SAE feature, which we then compile into a full report for each image, eliminating the need for fine-tuning large models for this task. To the best of our knowledge, SAE-Rad represents the first instance of using mechanistic interpretability techniques explicitly for a downstream multi-modal reasoning task. On the MIMIC-CXR dataset, SAE-Rad achieves competitive radiology-specific metrics compared to state-of-the-art models while using significantly fewer computational resources for training. Qualitative analysis reveals that SAE-Rad learns meaningful visual concepts and generates reports aligning closely with expert interpretations. Our results suggest that SAEs can enhance multimodal reasoning in healthcare, providing a more interpretable alternative to existing VLMs. |
|
VCR: Visual Caption Restoration | 2024-10-04 | ShowWe introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research. |
22 pa...22 pages, 6 figures, 7 tables |
Generalizable Prompt Tuning for Vision-Language Models | 2024-10-04 | ShowPrompt tuning for vision-language models such as CLIP involves optimizing the text prompts used to generate image-text pairs for specific downstream tasks. While hand-crafted or template-based prompts are generally applicable to a wider range of unseen classes, they tend to perform poorly in downstream tasks (i.e., seen classes). Learnable soft prompts, on the other hand, often perform well in downstream tasks but lack generalizability. Additionally, prior research has predominantly concentrated on the textual modality, with very few studies attempting to explore the prompt's generalization potential from the visual modality. Keeping these limitations in mind, we investigate how to prompt tuning to obtain both a competitive downstream performance and generalization. The study shows that by treating soft and hand-crafted prompts as dual views of the textual modality, and maximizing their mutual information, we can better ensemble task-specific and general semantic information. Moreover, to generate more expressive prompts, the study introduces a class-wise augmentation from the visual modality, resulting in significant robustness to a wider range of unseen classes. Extensive evaluations on several benchmarks report that the proposed approach achieves competitive results in terms of both task-specific performance and general abilities. |
|
Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models | 2024-10-04 | ShowLarge Vision-Language Models (LVLMs) have achieved impressive performance, yet research has pointed out a serious issue with object hallucinations within these models. However, there is no clear conclusion as to which part of the model these hallucinations originate from. In this paper, we present an in-depth investigation into the object hallucination problem specifically within the CLIP model, which serves as the backbone for many state-of-the-art vision-language systems. We unveil that even in isolation, the CLIP model is prone to object hallucinations, suggesting that the hallucination problem is not solely due to the interaction between vision and language modalities. To address this, we propose a counterfactual data augmentation method by creating negative samples with a variety of hallucination issues. We demonstrate that our method can effectively mitigate object hallucinations for CLIP model, and we show the the enhanced model can be employed as a visual encoder, effectively alleviating the object hallucination issue in LVLMs. |
EMNLP 2024 |
LLaRA: Supercharging Robot Learning Data for Vision-Language Policy | 2024-10-04 | ShowLLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and respond with policy decisions in text. We propose LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as conversations and provides improved action outputs when trained with auxiliary data that complements policy learning. We first introduce an automated pipeline to generate conversation-style instruction tuning data from existing behavior cloning data. Then we enrich the dataset in a self-supervised fashion by formulating six auxiliary tasks. A VLM finetuned with the resulting collection of datasets can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA. |
|
Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts | 2024-10-04 | ShowWe present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking logarithmic decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications. |
Findi...Findings of EMNLP 2024 |
Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs | 2024-10-04 | ShowNatural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts. To facilitate chart-based reasoning using natural language, various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts. These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language prompts. Despite the recent success of Large Language Models (LLMs) across diverse NLP tasks, their abilities and limitations in the realm of data visualization remain under-explored, possibly due to their lack of multi-modal capabilities. To bridge the gap, this paper presents the first comprehensive evaluation of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks. Our evaluation includes a comprehensive assessment of LVLMs, including GPT-4V and Gemini, across four major chart reasoning tasks. Furthermore, we perform a qualitative evaluation of LVLMs' performance on a diverse range of charts, aiming to provide a thorough analysis of their strengths and weaknesses. Our findings reveal that LVLMs demonstrate impressive abilities in generating fluent texts covering high-level data insights while also encountering common problems like hallucinations, factual errors, and data bias. We highlight the key strengths and limitations of chart comprehension tasks, offering insights for future research. |
|
Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models | 2024-10-04 | ShowRecent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability. |
|
CLIP-Clique: Graph-based Correspondence Matching Augmented by Vision Language Models for Object-based Global Localization | 2024-10-04 | ShowThis letter proposes a method of global localization on a map with semantic object landmarks. One of the most promising approaches for localization on object maps is to use semantic graph matching using landmark descriptors calculated from the distribution of surrounding objects. These descriptors are vulnerable to misclassification and partial observations. Moreover, many existing methods rely on inlier extraction using RANSAC, which is stochastic and sensitive to a high outlier rate. To address the former issue, we augment the correspondence matching using Vision Language Models (VLMs). Landmark discriminability is improved by VLM embeddings, which are independent of surrounding objects. In addition, inliers are estimated deterministically using a graph-theoretic approach. We also incorporate pose calculation using the weighted least squares considering correspondence similarity and observation completeness to improve the robustness. We confirmed improvements in matching and pose estimation accuracy through experiments on ScanNet and TUM datasets. |
IEEE ...IEEE Robotics and Automation Letters |
BiasDora: Exploring Hidden Biased Associations in Vision-Language Models | 2024-10-03 | ShowExisting works examining Vision-Language Models (VLMs) for social biases predominantly focus on a limited set of documented bias associations, such as gender:profession or race:crime. This narrow scope often overlooks a vast range of unexamined implicit associations, restricting the identification and, hence, mitigation of such biases. We address this gap by probing VLMs to (1) uncover hidden, implicit associations across 9 bias dimensions. We systematically explore diverse input and output modalities and (2) demonstrate how biased associations vary in their negativity, toxicity, and extremity. Our work (3) identifies subtle and extreme biases that are typically not recognized by existing methodologies. We make the Dataset of retrieved associations, (Dora), publicly available here https://github.com/chahatraj/BiasDora. |
Accep...Accepted to EMNLP Findings 2024 |
ESREAL: Exploiting Semantic Reconstruction to Mitigate Hallucinations in Vision-Language Models | 2024-10-03 | ShowHallucinations in vision-language models pose a significant challenge to their reliability, particularly in the generation of long captions. Current methods fall short of accurately identifying and mitigating these hallucinations. To address this issue, we introduce ESREAL, a novel unsupervised learning framework designed to suppress the generation of hallucinations through accurate localization and penalization of hallucinated tokens. Initially, ESREAL creates a reconstructed image based on the generated caption and aligns its corresponding regions with those of the original image. This semantic reconstruction aids in identifying both the presence and type of token-level hallucinations within the generated caption. Subsequently, ESREAL computes token-level hallucination scores by assessing the semantic similarity of aligned regions based on the type of hallucination. Finally, ESREAL employs a proximal policy optimization algorithm, where it selectively penalizes hallucinated tokens according to their token-level hallucination scores. Our framework notably reduces hallucinations in LLaVA, InstructBLIP, and mPLUG-Owl2 by 32.81%, 27.08%, and 7.46% on the CHAIR metric. This improvement is achieved solely through signals derived from the image itself, without the need for any image-text pairs. |
ECCV 2024 |
VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models | 2024-10-03 | ShowLarge Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose a large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human-annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative. |
ACL 2024 Findings |
Mitigating Dialogue Hallucination for Large Vision Language Models via Adversarial Instruction Tuning | 2024-10-03 | ShowMitigating hallucinations of Large Vision Language Models,(LVLMs) is crucial to enhance their reliability for general-purpose assistants. This paper shows that such hallucinations of LVLMs can be significantly exacerbated by preceding user-system dialogues. To precisely measure this, we first present an evaluation benchmark by extending popular multi-modal benchmark datasets with prepended hallucinatory dialogues powered by our novel Adversarial Question Generator (AQG), which can automatically generate image-related yet adversarial dialogues by adopting adversarial attacks on LVLMs. On our benchmark, the zero-shot performance of state-of-the-art LVLMs drops significantly for both the VQA and Captioning tasks. Next, we further reveal this hallucination is mainly due to the prediction bias toward preceding dialogues rather than visual content. To reduce this bias, we propose Adversarial Instruction Tuning (AIT) that robustly fine-tunes LVLMs against hallucinatory dialogues. Extensive experiments show our proposed approach successfully reduces dialogue hallucination while maintaining performance. |
|
Real-World Cooking Robot System from Recipes Based on Food State Recognition Using Foundation Models and PDDL | 2024-10-03 | ShowAlthough there is a growing demand for cooking behaviours as one of the expected tasks for robots, a series of cooking behaviours based on new recipe descriptions by robots in the real world has not yet been realised. In this study, we propose a robot system that integrates real-world executable robot cooking behaviour planning using the Large Language Model (LLM) and classical planning of PDDL descriptions, and food ingredient state recognition learning from a small number of data using the Vision-Language model (VLM). We succeeded in experiments in which PR2, a dual-armed wheeled robot, performed cooking from arranged new recipes in a real-world environment, and confirmed the effectiveness of the proposed system. |
Accep...Accepted at Advanced Robotics |
Interpreting and Editing Vision-Language Representations to Mitigate Hallucinations | 2024-10-03 | ShowWe investigate the internal representations of vision-language models (VLMs) to address hallucinations, a persistent challenge despite advances in model size and training. We project VLMs' internal image representations to their language vocabulary and observe more confident output probabilities on real objects than hallucinated objects. We additionally use these output probabilities to spatially localize real objects. Building on this approach, we introduce a knowledge erasure algorithm that removes hallucinations by linearly orthogonalizing image features with respect to hallucinated object features. We show that targeted edits to a model's latent representations can reduce hallucinations by up to 25.7% on the COCO2014 dataset while preserving performance. Our findings demonstrate how a deeper understanding of VLMs' latent representations can enhance reliability and enable novel capabilities, such as zero-shot segmentation. |
Proje...Project page and code: http://anishk23733.github.io/vl-interp/ |
DivScene: Benchmarking LVLMs for Object Navigation with Diverse Scenes and Objects | 2024-10-03 | ShowObject navigation in unknown environments is crucial for deploying embodied agents in real-world applications. While we have witnessed huge progress due to large-scale scene datasets, faster simulators, and stronger models, previous studies mainly focus on limited scene types and target objects. In this paper, we study a new task of navigating to diverse target objects in a large number of scene types. To benchmark the problem, we present a large-scale scene dataset, DivScene, which contains 4,614 scenes across 81 different types. With the dataset, we build an end-to-end embodied agent, NatVLM, by fine-tuning a Large Vision Language Model (LVLM) through imitation learning. The LVLM is trained to take previous observations from the environment and generate the next actions. We also introduce CoT explanation traces of the action prediction for better performance when tuning LVLMs. Our extensive experiments find that we can build a performant LVLM-based agent through imitation learning on the shortest paths constructed by a BFS planner without any human supervision. Our agent achieves a success rate that surpasses GPT-4o by over 20%. Meanwhile, we carry out various analyses showing the generalization ability of our agent. |
Work in Progress |
Unified Multi-Modal Interleaved Document Representation for Information Retrieval | 2024-10-03 | ShowInformation Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way. |
Preprint |
Understanding and Mitigating Miscalibration in Prompt Tuning for Vision-Language Models | 2024-10-03 | ShowConfidence calibration is critical for the safe deployment of machine learning models in the real world. However, such issue in vision-language models like CLIP, particularly after fine-tuning, has not been fully addressed. In this work, we demonstrate that existing prompt tuning methods usually lead to a trade-off of calibration between base and new classes: the cross-entropy loss in CoOp causes overconfidence in new classes by increasing textual label divergence, whereas the regularization of KgCoOp maintains the confidence level but results in underconfidence in base classes due to the improved accuracy. Inspired by the observations, we introduce Dynamic Outlier Regularization (DOR) to ensure the confidence calibration on both base and new classes after fine-tuning. In particular, we propose to minimize the feature deviation of novel textual labels (instead of base classes) sampled from a large vocabulary. In effect, DOR prevents the increase in textual divergence for new labels while easing restrictions on base classes. Extensive experiments demonstrate that DOR can enhance the calibration performance of current fine-tuning methods on base and new classes. |
Preprint |
Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks | 2024-10-03 | ShowText-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose Leopard, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations. |
Our c...Our code is available at https://github.com/Jill0001/Leopard |
Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution | 2024-10-03 | ShowWe present the Qwen2-VL Series, an advanced upgrade of the previous Qwen-VL models that redefines the conventional predetermined-resolution approach in visual processing. Qwen2-VL introduces the Naive Dynamic Resolution mechanism, which enables the model to dynamically process images of varying resolutions into different numbers of visual tokens. This approach allows the model to generate more efficient and accurate visual representations, closely aligning with human perceptual processes. The model also integrates Multimodal Rotary Position Embedding (M-RoPE), facilitating the effective fusion of positional information across text, images, and videos. We employ a unified paradigm for processing both images and videos, enhancing the model's visual perception capabilities. To explore the potential of large multimodal models, Qwen2-VL investigates the scaling laws for large vision-language models (LVLMs). By scaling both the model size-with versions at 2B, 8B, and 72B parameters-and the amount of training data, the Qwen2-VL Series achieves highly competitive performance. Notably, the Qwen2-VL-72B model achieves results comparable to leading models such as GPT-4o and Claude3.5-Sonnet across various multimodal benchmarks, outperforming other generalist models. Code is available at https://github.com/QwenLM/Qwen2-VL . |
Code ...Code is available at https://github.com/QwenLM/Qwen2-VL. arXiv admin note: text overlap with arXiv:2408.15262 by other authors |
LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model | 2024-10-03 | ShowState-of-the-art medical multi-modal large language models (med-MLLM), like LLaVA-Med or BioMedGPT, leverage instruction-following data in pre-training. However, those models primarily focus on scaling the model size and data volume to boost performance while mainly relying on the autoregressive learning objectives. Surprisingly, we reveal that such learning schemes might result in a weak alignment between vision and language modalities, making these models highly reliant on extensive pre-training datasets - a significant challenge in medical domains due to the expensive and time-consuming nature of curating high-quality instruction-following instances. We address this with LoGra-Med, a |