forked from pytorch/glow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
download_test_db.py
154 lines (127 loc) · 4.15 KB
/
download_test_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import argparse
import array
import collections
import gzip
import os.path
import pickle
import sys
import tarfile
import urllib
import sys
try:
from urllib.error import URLError
except ImportError:
from urllib2 import URLError
try:
from urllib.request import urlretrieve
except ImportError:
from urllib import urlretrieve
Dataset = collections.namedtuple('Dataset', 'filename, url, handler, dest_path')
def pickle_load(file):
if sys.version_info.major >= 3:
return pickle.load(file, encoding='bytes')
return pickle.load(file)
def handle_mnist(filename, dest_path):
print('Extracting {} ...'.format(filename))
with gzip.open(filename, 'rb') as file:
training_set, _, _ = pickle_load(file)
data, labels = training_set
images_file = open('mnist_images.bin', 'wb')
data.tofile(images_file)
images_file.close()
labels_file = open('mnist_labels.bin', 'wb')
L = array.array('B', labels)
L.tofile(labels_file)
labels_file.close()
def untar(filename, dest_path):
print('Extracting {} ...'.format(filename))
tar = tarfile.open(filename, "r:gz")
tar.extractall(dest_path)
tar.close()
DATASETS = dict(
mnist=Dataset(
'mnist.pkl.gz',
'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz',
handle_mnist,
'.',
),
cifar10=Dataset(
'cifar-10.binary.tar.gz',
'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz',
untar,
'.',
),
ptb=Dataset(
'ptb.tgz',
'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz',
untar,
'ptb',
),
fr2en=Dataset(
'fr2en.tar.gz',
'http://fb-glow-assets.s3.amazonaws.com/models/fr2en.tar.gz',
untar,
'fr2en',
),
)
DATASET_NAMES = list(DATASETS.keys())
def report_download_progress(chunk_number, chunk_size, file_size):
if file_size != -1:
percent = min(1, (chunk_number * chunk_size) / file_size)
bar = '#' * int(64 * percent)
sys.stdout.write('\r0% |{:<64}| {}%'.format(bar, int(percent * 100)))
def download_dataset(dataset):
if os.path.exists(dataset.filename):
print('{} already exists, skipping ...'.format(dataset.filename))
else:
print('Downloading {} from {} ...'.format(dataset.filename,
dataset.url))
try:
urlretrieve(
dataset.url,
dataset.filename,
reporthook=report_download_progress)
except URLError:
print('Error downloading {}!'.format(dataset.filename))
finally:
# Just a newline.
print()
def parse():
parser = argparse.ArgumentParser(description='Download datasets for Glow')
parser.add_argument('-d', '--datasets', nargs='+', choices=DATASET_NAMES)
parser.add_argument('-a', '--all', action='store_true')
options = parser.parse_args()
if options.all:
datasets = DATASET_NAMES
elif options.datasets:
datasets = options.datasets
else:
parser.error('Must specify at least one dataset or --all.')
return datasets
def main():
datasets = parse()
try:
for name in datasets:
dataset = DATASETS[name]
download_dataset(dataset)
dataset.handler(dataset.filename, dataset.dest_path)
print('Done.')
except KeyboardInterrupt:
print('Interrupted')
if __name__ == '__main__':
main()