forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpercpu.c
2465 lines (2128 loc) · 72.1 KB
/
percpu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* mm/percpu.c - percpu memory allocator
*
* Copyright (C) 2009 SUSE Linux Products GmbH
* Copyright (C) 2009 Tejun Heo <[email protected]>
*
* This file is released under the GPLv2 license.
*
* The percpu allocator handles both static and dynamic areas. Percpu
* areas are allocated in chunks which are divided into units. There is
* a 1-to-1 mapping for units to possible cpus. These units are grouped
* based on NUMA properties of the machine.
*
* c0 c1 c2
* ------------------- ------------------- ------------
* | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
* ------------------- ...... ------------------- .... ------------
*
* Allocation is done by offsets into a unit's address space. Ie., an
* area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
* c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
* and even sparse. Access is handled by configuring percpu base
* registers according to the cpu to unit mappings and offsetting the
* base address using pcpu_unit_size.
*
* There is special consideration for the first chunk which must handle
* the static percpu variables in the kernel image as allocation services
* are not online yet. In short, the first chunk is structure like so:
*
* <Static | [Reserved] | Dynamic>
*
* The static data is copied from the original section managed by the
* linker. The reserved section, if non-zero, primarily manages static
* percpu variables from kernel modules. Finally, the dynamic section
* takes care of normal allocations.
*
* Allocation state in each chunk is kept using an array of integers
* on chunk->map. A positive value in the map represents a free
* region and negative allocated. Allocation inside a chunk is done
* by scanning this map sequentially and serving the first matching
* entry. This is mostly copied from the percpu_modalloc() allocator.
* Chunks can be determined from the address using the index field
* in the page struct. The index field contains a pointer to the chunk.
*
* These chunks are organized into lists according to free_size and
* tries to allocate from the fullest chunk first. Each chunk maintains
* a maximum contiguous area size hint which is guaranteed to be equal
* to or larger than the maximum contiguous area in the chunk. This
* helps prevent the allocator from iterating over chunks unnecessarily.
*
* To use this allocator, arch code should do the following:
*
* - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
* regular address to percpu pointer and back if they need to be
* different from the default
*
* - use pcpu_setup_first_chunk() during percpu area initialization to
* setup the first chunk containing the kernel static percpu area
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/err.h>
#include <linux/lcm.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/kmemleak.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
#define CREATE_TRACE_POINTS
#include <trace/events/percpu.h>
#include "percpu-internal.h"
/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT 5
#define PCPU_EMPTY_POP_PAGES_LOW 2
#define PCPU_EMPTY_POP_PAGES_HIGH 4
#ifdef CONFIG_SMP
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr) \
(void __percpu *)((unsigned long)(addr) - \
(unsigned long)pcpu_base_addr + \
(unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr) \
(void __force *)((unsigned long)(ptr) + \
(unsigned long)pcpu_base_addr - \
(unsigned long)__per_cpu_start)
#endif
#else /* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
#endif /* CONFIG_SMP */
static int pcpu_unit_pages __ro_after_init;
static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
int pcpu_nr_slots __ro_after_init;
static size_t pcpu_chunk_struct_size __ro_after_init;
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __ro_after_init;
static unsigned int pcpu_high_unit_cpu __ro_after_init;
/* the address of the first chunk which starts with the kernel static area */
void *pcpu_base_addr __ro_after_init;
EXPORT_SYMBOL_GPL(pcpu_base_addr);
static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
/* group information, used for vm allocation */
static int pcpu_nr_groups __ro_after_init;
static const unsigned long *pcpu_group_offsets __ro_after_init;
static const size_t *pcpu_group_sizes __ro_after_init;
/*
* The first chunk which always exists. Note that unlike other
* chunks, this one can be allocated and mapped in several different
* ways and thus often doesn't live in the vmalloc area.
*/
struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
/*
* Optional reserved chunk. This chunk reserves part of the first
* chunk and serves it for reserved allocations. When the reserved
* region doesn't exist, the following variable is NULL.
*/
struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);
/*
* The number of empty populated pages, protected by pcpu_lock. The
* reserved chunk doesn't contribute to the count.
*/
int pcpu_nr_empty_pop_pages;
/*
* Balance work is used to populate or destroy chunks asynchronously. We
* try to keep the number of populated free pages between
* PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
* empty chunk.
*/
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;
static void pcpu_schedule_balance_work(void)
{
if (pcpu_async_enabled)
schedule_work(&pcpu_balance_work);
}
/**
* pcpu_addr_in_chunk - check if the address is served from this chunk
* @chunk: chunk of interest
* @addr: percpu address
*
* RETURNS:
* True if the address is served from this chunk.
*/
static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
{
void *start_addr, *end_addr;
if (!chunk)
return false;
start_addr = chunk->base_addr + chunk->start_offset;
end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
chunk->end_offset;
return addr >= start_addr && addr < end_addr;
}
static int __pcpu_size_to_slot(int size)
{
int highbit = fls(size); /* size is in bytes */
return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}
static int pcpu_size_to_slot(int size)
{
if (size == pcpu_unit_size)
return pcpu_nr_slots - 1;
return __pcpu_size_to_slot(size);
}
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
return 0;
return pcpu_size_to_slot(chunk->free_bytes);
}
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
page->index = (unsigned long)pcpu;
}
/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
return (struct pcpu_chunk *)page->index;
}
static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
{
return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
}
static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
{
return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
}
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
unsigned int cpu, int page_idx)
{
return (unsigned long)chunk->base_addr +
pcpu_unit_page_offset(cpu, page_idx);
}
static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
{
*rs = find_next_zero_bit(bitmap, end, *rs);
*re = find_next_bit(bitmap, end, *rs + 1);
}
static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
{
*rs = find_next_bit(bitmap, end, *rs);
*re = find_next_zero_bit(bitmap, end, *rs + 1);
}
/*
* Bitmap region iterators. Iterates over the bitmap between
* [@start, @end) in @chunk. @rs and @re should be integer variables
* and will be set to start and end index of the current free region.
*/
#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
(rs) < (re); \
(rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
(rs) < (re); \
(rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
/*
* The following are helper functions to help access bitmaps and convert
* between bitmap offsets to address offsets.
*/
static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
{
return chunk->alloc_map +
(index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
}
static unsigned long pcpu_off_to_block_index(int off)
{
return off / PCPU_BITMAP_BLOCK_BITS;
}
static unsigned long pcpu_off_to_block_off(int off)
{
return off & (PCPU_BITMAP_BLOCK_BITS - 1);
}
/**
* pcpu_mem_zalloc - allocate memory
* @size: bytes to allocate
*
* Allocate @size bytes. If @size is smaller than PAGE_SIZE,
* kzalloc() is used; otherwise, vzalloc() is used. The returned
* memory is always zeroed.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
* RETURNS:
* Pointer to the allocated area on success, NULL on failure.
*/
static void *pcpu_mem_zalloc(size_t size)
{
if (WARN_ON_ONCE(!slab_is_available()))
return NULL;
if (size <= PAGE_SIZE)
return kzalloc(size, GFP_KERNEL);
else
return vzalloc(size);
}
/**
* pcpu_mem_free - free memory
* @ptr: memory to free
*
* Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
*/
static void pcpu_mem_free(void *ptr)
{
kvfree(ptr);
}
/**
* pcpu_chunk_relocate - put chunk in the appropriate chunk slot
* @chunk: chunk of interest
* @oslot: the previous slot it was on
*
* This function is called after an allocation or free changed @chunk.
* New slot according to the changed state is determined and @chunk is
* moved to the slot. Note that the reserved chunk is never put on
* chunk slots.
*
* CONTEXT:
* pcpu_lock.
*/
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
int nslot = pcpu_chunk_slot(chunk);
if (chunk != pcpu_reserved_chunk && oslot != nslot) {
if (oslot < nslot)
list_move(&chunk->list, &pcpu_slot[nslot]);
else
list_move_tail(&chunk->list, &pcpu_slot[nslot]);
}
}
/**
* pcpu_cnt_pop_pages- counts populated backing pages in range
* @chunk: chunk of interest
* @bit_off: start offset
* @bits: size of area to check
*
* Calculates the number of populated pages in the region
* [page_start, page_end). This keeps track of how many empty populated
* pages are available and decide if async work should be scheduled.
*
* RETURNS:
* The nr of populated pages.
*/
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
if (page_start >= page_end)
return 0;
/*
* bitmap_weight counts the number of bits set in a bitmap up to
* the specified number of bits. This is counting the populated
* pages up to page_end and then subtracting the populated pages
* up to page_start to count the populated pages in
* [page_start, page_end).
*/
return bitmap_weight(chunk->populated, page_end) -
bitmap_weight(chunk->populated, page_start);
}
/**
* pcpu_chunk_update - updates the chunk metadata given a free area
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of free area
*
* This updates the chunk's contig hint and starting offset given a free area.
*/
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
if (bits > chunk->contig_bits) {
chunk->contig_bits_start = bit_off;
chunk->contig_bits = bits;
}
}
/**
* pcpu_chunk_refresh_hint - updates metadata about a chunk
* @chunk: chunk of interest
*
* Iterates over the chunk to find the largest free area.
*
* Updates:
* chunk->contig_bits
* chunk->contig_bits_start
* nr_empty_pop_pages
*/
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
{
int bits, nr_empty_pop_pages;
int rs, re; /* region start, region end */
/* clear metadata */
chunk->contig_bits = 0;
bits = nr_empty_pop_pages = 0;
pcpu_for_each_unpop_region(chunk->alloc_map, rs, re, chunk->first_bit,
pcpu_chunk_map_bits(chunk)) {
bits = re - rs;
pcpu_chunk_update(chunk, rs, bits);
nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, rs, bits);
}
/*
* Keep track of nr_empty_pop_pages.
*
* The chunk maintains the previous number of free pages it held,
* so the delta is used to update the global counter. The reserved
* chunk is not part of the free page count as they are populated
* at init and are special to serving reserved allocations.
*/
if (chunk != pcpu_reserved_chunk)
pcpu_nr_empty_pop_pages +=
(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
chunk->nr_empty_pop_pages = nr_empty_pop_pages;
}
/**
* pcpu_block_update - updates a block given a free area
* @block: block of interest
* @start: start offset in block
* @end: end offset in block
*
* Updates a block given a known free area. The region [start, end) is
* expected to be the entirety of the free area within a block.
*/
static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
{
int contig = end - start;
block->first_free = min(block->first_free, start);
if (start == 0)
block->left_free = contig;
if (end == PCPU_BITMAP_BLOCK_BITS)
block->right_free = contig;
if (contig > block->contig_hint) {
block->contig_hint_start = start;
block->contig_hint = contig;
}
}
/**
* pcpu_block_refresh_hint
* @chunk: chunk of interest
* @index: index of the metadata block
*
* Scans over the block beginning at first_free and updates the block
* metadata accordingly.
*/
static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
struct pcpu_block_md *block = chunk->md_blocks + index;
unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
int rs, re; /* region start, region end */
/* clear hints */
block->contig_hint = 0;
block->left_free = block->right_free = 0;
/* iterate over free areas and update the contig hints */
pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
PCPU_BITMAP_BLOCK_BITS) {
pcpu_block_update(block, rs, re);
}
}
/**
* pcpu_block_update_hint_alloc - update hint on allocation path
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of request
*/
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */
/*
* Calculate per block offsets.
* The calculation uses an inclusive range, but the resulting offsets
* are [start, end). e_index always points to the last block in the
* range.
*/
s_index = pcpu_off_to_block_index(bit_off);
e_index = pcpu_off_to_block_index(bit_off + bits - 1);
s_off = pcpu_off_to_block_off(bit_off);
e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
s_block = chunk->md_blocks + s_index;
e_block = chunk->md_blocks + e_index;
/*
* Update s_block.
*/
pcpu_block_refresh_hint(chunk, s_index);
/*
* Update e_block.
*/
if (s_index != e_index) {
pcpu_block_refresh_hint(chunk, e_index);
/* update in-between md_blocks */
for (block = s_block + 1; block < e_block; block++) {
block->contig_hint = 0;
block->left_free = 0;
block->right_free = 0;
}
}
pcpu_chunk_refresh_hint(chunk);
}
/**
* pcpu_block_update_hint_free - updates the block hints on the free path
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of request
*/
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */
/*
* Calculate per block offsets.
* The calculation uses an inclusive range, but the resulting offsets
* are [start, end). e_index always points to the last block in the
* range.
*/
s_index = pcpu_off_to_block_index(bit_off);
e_index = pcpu_off_to_block_index(bit_off + bits - 1);
s_off = pcpu_off_to_block_off(bit_off);
e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
s_block = chunk->md_blocks + s_index;
e_block = chunk->md_blocks + e_index;
/* update s_block */
pcpu_block_refresh_hint(chunk, s_index);
/* freeing in the same block */
if (s_index != e_index) {
/* update e_block */
pcpu_block_refresh_hint(chunk, e_index);
/* reset md_blocks in the middle */
for (block = s_block + 1; block < e_block; block++) {
block->first_free = 0;
block->contig_hint_start = 0;
block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
block->left_free = PCPU_BITMAP_BLOCK_BITS;
block->right_free = PCPU_BITMAP_BLOCK_BITS;
}
}
pcpu_chunk_refresh_hint(chunk);
}
/**
* pcpu_is_populated - determines if the region is populated
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of area
* @next_off: return value for the next offset to start searching
*
* For atomic allocations, check if the backing pages are populated.
*
* RETURNS:
* Bool if the backing pages are populated.
* next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
*/
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
int *next_off)
{
int page_start, page_end, rs, re;
page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
rs = page_start;
pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
if (rs >= page_end)
return true;
*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
return false;
}
/**
* pcpu_find_block_fit - finds the block index to start searching
* @chunk: chunk of interest
* @alloc_bits: size of request in allocation units
* @align: alignment of area (max PAGE_SIZE bytes)
* @pop_only: use populated regions only
*
* RETURNS:
* The offset in the bitmap to begin searching.
* -1 if no offset is found.
*/
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, bool pop_only)
{
int bit_off, bits;
int re; /* region end */
/*
* Check to see if the allocation can fit in the chunk's contig hint.
* This is an optimization to prevent scanning by assuming if it
* cannot fit in the global hint, there is memory pressure and creating
* a new chunk would happen soon.
*/
bit_off = ALIGN(chunk->contig_bits_start, align) -
chunk->contig_bits_start;
if (bit_off + alloc_bits > chunk->contig_bits)
return -1;
pcpu_for_each_unpop_region(chunk->alloc_map, bit_off, re,
chunk->first_bit,
pcpu_chunk_map_bits(chunk)) {
bits = re - bit_off;
/* check alignment */
bits -= ALIGN(bit_off, align) - bit_off;
bit_off = ALIGN(bit_off, align);
if (bits < alloc_bits)
continue;
bits = alloc_bits;
if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
&bit_off))
break;
bits = 0;
}
if (bit_off == pcpu_chunk_map_bits(chunk))
return -1;
return bit_off;
}
/**
* pcpu_alloc_area - allocates an area from a pcpu_chunk
* @chunk: chunk of interest
* @alloc_bits: size of request in allocation units
* @align: alignment of area (max PAGE_SIZE)
* @start: bit_off to start searching
*
* This function takes in a @start offset to begin searching to fit an
* allocation of @alloc_bits with alignment @align. If it confirms a
* valid free area, it then updates the allocation and boundary maps
* accordingly.
*
* RETURNS:
* Allocated addr offset in @chunk on success.
* -1 if no matching area is found.
*/
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, int start)
{
size_t align_mask = (align) ? (align - 1) : 0;
int bit_off, end, oslot;
lockdep_assert_held(&pcpu_lock);
oslot = pcpu_chunk_slot(chunk);
/*
* Search to find a fit.
*/
end = start + alloc_bits;
bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
alloc_bits, align_mask);
if (bit_off >= end)
return -1;
/* update alloc map */
bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
/* update boundary map */
set_bit(bit_off, chunk->bound_map);
bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
set_bit(bit_off + alloc_bits, chunk->bound_map);
chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
/* update first free bit */
if (bit_off == chunk->first_bit)
chunk->first_bit = find_next_zero_bit(
chunk->alloc_map,
pcpu_chunk_map_bits(chunk),
bit_off + alloc_bits);
pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
pcpu_chunk_relocate(chunk, oslot);
return bit_off * PCPU_MIN_ALLOC_SIZE;
}
/**
* pcpu_free_area - frees the corresponding offset
* @chunk: chunk of interest
* @off: addr offset into chunk
*
* This function determines the size of an allocation to free using
* the boundary bitmap and clears the allocation map.
*/
static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
{
int bit_off, bits, end, oslot;
lockdep_assert_held(&pcpu_lock);
pcpu_stats_area_dealloc(chunk);
oslot = pcpu_chunk_slot(chunk);
bit_off = off / PCPU_MIN_ALLOC_SIZE;
/* find end index */
end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
bit_off + 1);
bits = end - bit_off;
bitmap_clear(chunk->alloc_map, bit_off, bits);
/* update metadata */
chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
/* update first free bit */
chunk->first_bit = min(chunk->first_bit, bit_off);
pcpu_block_update_hint_free(chunk, bit_off, bits);
pcpu_chunk_relocate(chunk, oslot);
}
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
struct pcpu_block_md *md_block;
for (md_block = chunk->md_blocks;
md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
md_block++) {
md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
}
}
/**
* pcpu_alloc_first_chunk - creates chunks that serve the first chunk
* @tmp_addr: the start of the region served
* @map_size: size of the region served
*
* This is responsible for creating the chunks that serve the first chunk. The
* base_addr is page aligned down of @tmp_addr while the region end is page
* aligned up. Offsets are kept track of to determine the region served. All
* this is done to appease the bitmap allocator in avoiding partial blocks.
*
* RETURNS:
* Chunk serving the region at @tmp_addr of @map_size.
*/
static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
int map_size)
{
struct pcpu_chunk *chunk;
unsigned long aligned_addr, lcm_align;
int start_offset, offset_bits, region_size, region_bits;
/* region calculations */
aligned_addr = tmp_addr & PAGE_MASK;
start_offset = tmp_addr - aligned_addr;
/*
* Align the end of the region with the LCM of PAGE_SIZE and
* PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
* the other.
*/
lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
region_size = ALIGN(start_offset + map_size, lcm_align);
/* allocate chunk */
chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
BITS_TO_LONGS(region_size >> PAGE_SHIFT),
0);
INIT_LIST_HEAD(&chunk->list);
chunk->base_addr = (void *)aligned_addr;
chunk->start_offset = start_offset;
chunk->end_offset = region_size - chunk->start_offset - map_size;
chunk->nr_pages = region_size >> PAGE_SHIFT;
region_bits = pcpu_chunk_map_bits(chunk);
chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
sizeof(chunk->alloc_map[0]), 0);
chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
sizeof(chunk->bound_map[0]), 0);
chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
sizeof(chunk->md_blocks[0]), 0);
pcpu_init_md_blocks(chunk);
/* manage populated page bitmap */
chunk->immutable = true;
bitmap_fill(chunk->populated, chunk->nr_pages);
chunk->nr_populated = chunk->nr_pages;
chunk->nr_empty_pop_pages =
pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
map_size / PCPU_MIN_ALLOC_SIZE);
chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
chunk->free_bytes = map_size;
if (chunk->start_offset) {
/* hide the beginning of the bitmap */
offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
bitmap_set(chunk->alloc_map, 0, offset_bits);
set_bit(0, chunk->bound_map);
set_bit(offset_bits, chunk->bound_map);
chunk->first_bit = offset_bits;
pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
}
if (chunk->end_offset) {
/* hide the end of the bitmap */
offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
bitmap_set(chunk->alloc_map,
pcpu_chunk_map_bits(chunk) - offset_bits,
offset_bits);
set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
chunk->bound_map);
set_bit(region_bits, chunk->bound_map);
pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
- offset_bits, offset_bits);
}
return chunk;
}
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
struct pcpu_chunk *chunk;
int region_bits;
chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
if (!chunk)
return NULL;
INIT_LIST_HEAD(&chunk->list);
chunk->nr_pages = pcpu_unit_pages;
region_bits = pcpu_chunk_map_bits(chunk);
chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
sizeof(chunk->alloc_map[0]));
if (!chunk->alloc_map)
goto alloc_map_fail;
chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
sizeof(chunk->bound_map[0]));
if (!chunk->bound_map)
goto bound_map_fail;
chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
sizeof(chunk->md_blocks[0]));
if (!chunk->md_blocks)
goto md_blocks_fail;
pcpu_init_md_blocks(chunk);
/* init metadata */
chunk->contig_bits = region_bits;
chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
return chunk;
md_blocks_fail:
pcpu_mem_free(chunk->bound_map);
bound_map_fail:
pcpu_mem_free(chunk->alloc_map);
alloc_map_fail:
pcpu_mem_free(chunk);
return NULL;
}
static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
if (!chunk)
return;
pcpu_mem_free(chunk->bound_map);
pcpu_mem_free(chunk->alloc_map);
pcpu_mem_free(chunk);
}
/**
* pcpu_chunk_populated - post-population bookkeeping
* @chunk: pcpu_chunk which got populated
* @page_start: the start page
* @page_end: the end page
* @for_alloc: if this is to populate for allocation
*
* Pages in [@page_start,@page_end) have been populated to @chunk. Update
* the bookkeeping information accordingly. Must be called after each
* successful population.
*
* If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
* is to serve an allocation in that area.
*/
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
int page_end, bool for_alloc)
{
int nr = page_end - page_start;
lockdep_assert_held(&pcpu_lock);
bitmap_set(chunk->populated, page_start, nr);
chunk->nr_populated += nr;
if (!for_alloc) {
chunk->nr_empty_pop_pages += nr;
pcpu_nr_empty_pop_pages += nr;
}
}
/**
* pcpu_chunk_depopulated - post-depopulation bookkeeping
* @chunk: pcpu_chunk which got depopulated
* @page_start: the start page
* @page_end: the end page
*
* Pages in [@page_start,@page_end) have been depopulated from @chunk.
* Update the bookkeeping information accordingly. Must be called after
* each successful depopulation.
*/
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
int nr = page_end - page_start;
lockdep_assert_held(&pcpu_lock);
bitmap_clear(chunk->populated, page_start, nr);
chunk->nr_populated -= nr;
chunk->nr_empty_pop_pages -= nr;
pcpu_nr_empty_pop_pages -= nr;
}
/*
* Chunk management implementation.