-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
executable file
·65 lines (51 loc) · 1.74 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# FileName: mnist.py
#
# Description:
#
# Version: 1.0
# Created: 2019-10-08 16:38:35
# Last Modified: 2019-10-15 21:57:55
# Revision: none
# Compiler: gcc
#
# Author: zt ()
# Organization:
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense
# 数据集
# 读取并划分MNIST训练集、测试集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# print(len(X_train))
X_train = X_train.reshape(len(X_train), -1) # 二维变一维
# print(X_train.shape)
X_test = X_test.reshape(len(X_test), -1)
X_train = X_train.astype('float32') # 转为float类型
X_test = X_test.astype('float32')
X_train = (X_train - 127) / 127 # 灰度像素数据归一化
X_test = (X_test - 127) / 127
# 独热编码。如原来为5,转换后[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
# 定义模型
# Keras序列模型
model = Sequential()
# 添加全连接层(隐藏层),隐藏层数20层,激活函数为ReLU
model.add(Dense(20, input_shape=(784,), activation='relu'))
# 添加输出层,结果10类,激活函数为Sigmoid
model.add(Dense(10, activation='sigmoid'))
# 模型基本信息
print(model.summary())
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练
model.fit(X_train, y_train, epochs=20, batch_size=64, verbose=1, validation_split=0.025) # 迭代20次
# 评估
loss, accuracy = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', accuracy)
# 保存
model.save('mnistmodel.h5')