forked from richzhang/colorization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
colorize.py
61 lines (47 loc) · 2.55 KB
/
colorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import os
import skimage.color as color
import matplotlib.pyplot as plt
import scipy.ndimage.interpolation as sni
import caffe
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='iColor: deep interactive colorization')
parser.add_argument('-img_in',dest='img_in',help='grayscale image to read in', type=str)
parser.add_argument('-img_out',dest='img_out',help='colorized image to save off', type=str)
parser.add_argument('--gpu', dest='gpu', help='gpu id', type=int, default=0)
parser.add_argument('--prototxt',dest='prototxt',help='prototxt filepath', type=str, default='./models/colorization_deploy_v2.prototxt')
parser.add_argument('--caffemodel',dest='caffemodel',help='caffemodel filepath', type=str, default='./models/colorization_release_v2.caffemodel')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
caffe.set_mode_gpu()
caffe.set_device(args.gpu)
# Select desired model
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
(H_in,W_in) = net.blobs['data_l'].data.shape[2:] # get input shape
(H_out,W_out) = net.blobs['class8_ab'].data.shape[2:] # get output shape
pts_in_hull = np.load('./resources/pts_in_hull.npy') # load cluster centers
net.params['class8_ab'][0].data[:,:,0,0] = pts_in_hull.transpose((1,0)) # populate cluster centers as 1x1 convolution kernel
# print 'Annealed-Mean Parameters populated'
# load the original image
img_rgb = caffe.io.load_image(args.img_in)
img_lab = color.rgb2lab(img_rgb) # convert image to lab color space
img_l = img_lab[:,:,0] # pull out L channel
(H_orig,W_orig) = img_rgb.shape[:2] # original image size
# create grayscale version of image (just for displaying)
img_lab_bw = img_lab.copy()
img_lab_bw[:,:,1:] = 0
img_rgb_bw = color.lab2rgb(img_lab_bw)
# resize image to network input size
img_rs = caffe.io.resize_image(img_rgb,(H_in,W_in)) # resize image to network input size
img_lab_rs = color.rgb2lab(img_rs)
img_l_rs = img_lab_rs[:,:,0]
net.blobs['data_l'].data[0,0,:,:] = img_l_rs-50 # subtract 50 for mean-centering
net.forward() # run network
ab_dec = net.blobs['class8_ab'].data[0,:,:,:].transpose((1,2,0)) # this is our result
ab_dec_us = sni.zoom(ab_dec,(1.*H_orig/H_out,1.*W_orig/W_out,1)) # upsample to match size of original image L
img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L
img_rgb_out = (255*np.clip(color.lab2rgb(img_lab_out),0,1)).astype('uint8') # convert back to rgb
plt.imsave(args.img_out, img_rgb_out)