forked from sooftware/kospeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deepspeech2.py
44 lines (36 loc) · 1.58 KB
/
test_deepspeech2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) 2020, Soohwan Kim. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from kospeech.models import DeepSpeech2
batch_size = 3
sequence_length = 14321
dimension = 80
cuda = torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')
model = DeepSpeech2(num_classes=10, input_dim=dimension).to(device)
criterion = nn.CTCLoss(blank=3, zero_infinity=True)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-04)
for i in range(10):
inputs = torch.rand(batch_size, sequence_length, dimension).to(device)
input_lengths = torch.IntTensor([12345, 12300, 12000])
targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
[1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
[1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
target_lengths = torch.LongTensor([9, 8, 7])
outputs, output_lengths = model(inputs, input_lengths)
loss = criterion(outputs.transpose(0, 1), targets[:, 1:], output_lengths, target_lengths)
loss.backward()
optimizer.step()
print(loss)