forked from twjiang/graphSAGE-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
76 lines (63 loc) · 3.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import sys
import os
import torch
import argparse
import pyhocon
import random
from src.dataCenter import *
from src.utils import *
from src.models import *
parser = argparse.ArgumentParser(description='pytorch version of GraphSAGE')
parser.add_argument('--dataSet', type=str, default='cora')
parser.add_argument('--agg_func', type=str, default='MEAN')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--b_sz', type=int, default=20)
parser.add_argument('--seed', type=int, default=824)
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--gcn', action='store_true')
parser.add_argument('--learn_method', type=str, default='sup')
parser.add_argument('--unsup_loss', type=str, default='normal')
parser.add_argument('--max_vali_f1', type=float, default=0)
parser.add_argument('--name', type=str, default='debug')
parser.add_argument('--config', type=str, default='./src/experiments.conf')
args = parser.parse_args()
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
device_id = torch.cuda.current_device()
print('using device', device_id, torch.cuda.get_device_name(device_id))
device = torch.device("cuda" if args.cuda else "cpu")
print('DEVICE:', device)
if __name__ == '__main__':
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# load config file
config = pyhocon.ConfigFactory.parse_file(args.config)
# load data
ds = args.dataSet
dataCenter = DataCenter(config)
dataCenter.load_dataSet(ds)
features = torch.FloatTensor(getattr(dataCenter, ds+'_feats')).to(device)
graphSage = GraphSage(config['setting.num_layers'], features.size(1), config['setting.hidden_emb_size'], features, getattr(dataCenter, ds+'_adj_lists'), device, gcn=args.gcn, agg_func=args.agg_func)
graphSage.to(device)
num_labels = len(set(getattr(dataCenter, ds+'_labels')))
classification = Classification(config['setting.hidden_emb_size'], num_labels)
classification.to(device)
unsupervised_loss = UnsupervisedLoss(getattr(dataCenter, ds+'_adj_lists'), getattr(dataCenter, ds+'_train'), device)
if args.learn_method == 'sup':
print('GraphSage with Supervised Learning')
elif args.learn_method == 'plus_unsup':
print('GraphSage with Supervised Learning plus Net Unsupervised Learning')
else:
print('GraphSage with Net Unsupervised Learning')
for epoch in range(args.epochs):
print('----------------------EPOCH %d-----------------------' % epoch)
graphSage, classification = apply_model(dataCenter, ds, graphSage, classification, unsupervised_loss, args.b_sz, args.unsup_loss, device, args.learn_method)
if (epoch+1) % 2 == 0 and args.learn_method == 'unsup':
classification, args.max_vali_f1 = train_classification(dataCenter, graphSage, classification, ds, device, args.max_vali_f1, args.name)
if args.learn_method != 'unsup':
args.max_vali_f1 = evaluate(dataCenter, ds, graphSage, classification, device, args.max_vali_f1, args.name, epoch)