diff --git a/README.md b/README.md
index ea33e4c..ea17382 100644
--- a/README.md
+++ b/README.md
@@ -679,6 +679,39 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
+## Adaptive Token Sampling
+
+
+
+This paper proposes to use the CLS attention scores, re-weighed by the norms of the value heads, as means to discard unimportant tokens at different layers.
+
+```python
+import torch
+from vit_pytorch.ats_vit import ViT
+
+v = ViT(
+ image_size = 256,
+ patch_size = 16,
+ num_classes = 1000,
+ dim = 1024,
+ depth = 6,
+ max_tokens_per_depth = (256, 128, 64, 32, 16, 8), # a tuple that denotes the maximum number of tokens that any given layer should have. if the layer has greater than this amount, it will undergo adaptive token sampling
+ heads = 16,
+ mlp_dim = 2048,
+ dropout = 0.1,
+ emb_dropout = 0.1
+)
+
+img = torch.randn(4, 3, 256, 256)
+
+preds = v(img) # (1, 1000)
+
+# you can also get a list of the final sampled patch ids
+# a value of -1 denotes padding
+
+preds, token_ids = v(img, return_sampled_token_ids = True) # (1, 1000), (1, <=8)
+```
+
## Dino
@@ -1119,6 +1152,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
+```bibtex
+@misc{fayyaz2021ats,
+ title = {ATS: Adaptive Token Sampling For Efficient Vision Transformers},
+ author = {Mohsen Fayyaz and Soroush Abbasi Kouhpayegani and Farnoush Rezaei Jafari and Eric Sommerlade and Hamid Reza Vaezi Joze and Hamed Pirsiavash and Juergen Gall},
+ year = {2021},
+ eprint = {2111.15667},
+ archivePrefix = {arXiv},
+ primaryClass = {cs.CV}
+}
+```
+
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
diff --git a/images/ats.png b/images/ats.png
new file mode 100644
index 0000000..e0e945c
Binary files /dev/null and b/images/ats.png differ
diff --git a/setup.py b/setup.py
index 1436b3d..889a312 100644
--- a/setup.py
+++ b/setup.py
@@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
- version = '0.24.2',
+ version = '0.24.3',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
diff --git a/vit_pytorch/ats_vit.py b/vit_pytorch/ats_vit.py
new file mode 100644
index 0000000..0af1017
--- /dev/null
+++ b/vit_pytorch/ats_vit.py
@@ -0,0 +1,262 @@
+import torch
+import torch.nn.functional as F
+from torch.nn.utils.rnn import pad_sequence
+from torch import nn, einsum
+
+from einops import rearrange, repeat
+from einops.layers.torch import Rearrange
+
+# helpers
+
+def exists(val):
+ return val is not None
+
+def pair(t):
+ return t if isinstance(t, tuple) else (t, t)
+
+# adaptive token sampling functions and classes
+
+def log(t, eps = 1e-6):
+ return torch.log(t + eps)
+
+def sample_gumbel(shape, device, dtype, eps = 1e-6):
+ u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1)
+ return -log(-log(u, eps), eps)
+
+def batched_index_select(values, indices, dim = 1):
+ value_dims = values.shape[(dim + 1):]
+ values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
+ indices = indices[(..., *((None,) * len(value_dims)))]
+ indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
+ value_expand_len = len(indices_shape) - (dim + 1)
+ values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
+
+ value_expand_shape = [-1] * len(values.shape)
+ expand_slice = slice(dim, (dim + value_expand_len))
+ value_expand_shape[expand_slice] = indices.shape[expand_slice]
+ values = values.expand(*value_expand_shape)
+
+ dim += value_expand_len
+ return values.gather(dim, indices)
+
+class AdaptiveTokenSampling(nn.Module):
+ def __init__(self, output_num_tokens, eps = 1e-6):
+ super().__init__()
+ self.eps = eps
+ self.output_num_tokens = output_num_tokens
+
+ def forward(self, attn, value, mask):
+ heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype
+
+ # first get the attention values for CLS token to all other tokens
+
+ cls_attn = attn[..., 0, 1:]
+
+ # calculate the norms of the values, for weighting the scores, as described in the paper
+
+ value_norms = value[..., 1:, :].norm(dim = -1)
+
+ # weigh the attention scores by the norm of the values, sum across all heads
+
+ cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms)
+
+ # normalize to 1
+
+ normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps)
+
+ # instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead
+
+ pseudo_logits = log(normed_cls_attn)
+
+ # mask out pseudo logits for gumbel-max sampling
+
+ mask_without_cls = mask[:, 1:]
+ mask_value = -torch.finfo(attn.dtype).max / 2
+ pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value)
+
+ # expand k times, k being the adaptive sampling number
+
+ pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens)
+ pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype)
+
+ # gumble-max and add one to reserve 0 for padding / mask
+
+ sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1
+
+ # calculate unique using torch.unique and then pad the sequence from the right
+
+ unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)]
+ unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True)
+
+ # calculate the new mask, based on the padding
+
+ new_mask = unique_sampled_token_ids != 0
+
+ # CLS token never gets masked out (gets a value of True)
+
+ new_mask = F.pad(new_mask, (1, 0), value = True)
+
+ # prepend a 0 token id to keep the CLS attention scores
+
+ unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0)
+ expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads)
+
+ # gather the new attention scores
+
+ new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2)
+
+ # return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual)
+ return new_attn, new_mask, unique_sampled_token_ids
+
+# classes
+
+class PreNorm(nn.Module):
+ def __init__(self, dim, fn):
+ super().__init__()
+ self.norm = nn.LayerNorm(dim)
+ self.fn = fn
+ def forward(self, x, **kwargs):
+ return self.fn(self.norm(x), **kwargs)
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, hidden_dim, dropout = 0.):
+ super().__init__()
+ self.net = nn.Sequential(
+ nn.Linear(dim, hidden_dim),
+ nn.GELU(),
+ nn.Dropout(dropout),
+ nn.Linear(hidden_dim, dim),
+ nn.Dropout(dropout)
+ )
+ def forward(self, x):
+ return self.net(x)
+
+class Attention(nn.Module):
+ def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None):
+ super().__init__()
+ inner_dim = dim_head * heads
+ self.heads = heads
+ self.scale = dim_head ** -0.5
+
+ self.attend = nn.Softmax(dim = -1)
+ self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
+
+ self.output_num_tokens = output_num_tokens
+ self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, dim),
+ nn.Dropout(dropout)
+ )
+
+ def forward(self, x, *, mask):
+ num_tokens = x.shape[1]
+
+ qkv = self.to_qkv(x).chunk(3, dim = -1)
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
+
+ dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
+
+ if exists(mask):
+ dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j')
+ mask_value = -torch.finfo(dots.dtype).max
+ dots = dots.masked_fill(~dots_mask, mask_value)
+
+ attn = self.attend(dots)
+
+ sampled_token_ids = None
+
+ # if adaptive token sampling is enabled
+ # and number of tokens is greater than the number of output tokens
+ if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens:
+ attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask)
+
+ out = torch.matmul(attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+
+ return self.to_out(out), mask, sampled_token_ids
+
+class Transformer(nn.Module):
+ def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.):
+ super().__init__()
+ assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer'
+ assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order'
+ assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer'
+
+ self.layers = nn.ModuleList([])
+ for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
+ self.layers.append(nn.ModuleList([
+ PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
+ PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
+ ]))
+
+ def forward(self, x):
+ b, n, device = *x.shape[:2], x.device
+
+ # use mask to keep track of the paddings when sampling tokens
+ # as the duplicates (when sampling) are just removed, as mentioned in the paper
+ mask = torch.ones((b, n), device = device, dtype = torch.bool)
+
+ token_ids = torch.arange(n, device = device)
+ token_ids = repeat(token_ids, 'n -> b n', b = b)
+
+ for attn, ff in self.layers:
+ attn_out, mask, sampled_token_ids = attn(x, mask = mask)
+
+ # when token sampling, one needs to then gather the residual tokens with the sampled token ids
+ if exists(sampled_token_ids):
+ x = batched_index_select(x, sampled_token_ids, dim = 1)
+ token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1)
+
+ x = x + attn_out
+
+ x = ff(x) + x
+
+ return x, token_ids
+
+class ViT(nn.Module):
+ def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
+ super().__init__()
+ image_height, image_width = pair(image_size)
+ patch_height, patch_width = pair(patch_size)
+
+ assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
+
+ num_patches = (image_height // patch_height) * (image_width // patch_width)
+ patch_dim = channels * patch_height * patch_width
+
+ self.to_patch_embedding = nn.Sequential(
+ Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
+ nn.Linear(patch_dim, dim),
+ )
+
+ self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
+ self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
+ self.dropout = nn.Dropout(emb_dropout)
+
+ self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout)
+
+ self.mlp_head = nn.Sequential(
+ nn.LayerNorm(dim),
+ nn.Linear(dim, num_classes)
+ )
+
+ def forward(self, img, return_sampled_token_ids = False):
+ x = self.to_patch_embedding(img)
+ b, n, _ = x.shape
+
+ cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
+ x = torch.cat((cls_tokens, x), dim=1)
+ x += self.pos_embedding[:, :(n + 1)]
+ x = self.dropout(x)
+
+ x, token_ids = self.transformer(x)
+
+ logits = self.mlp_head(x[:, 0])
+
+ if return_sampled_token_ids:
+ # remove CLS token and decrement by 1 to make -1 the padding
+ token_ids = token_ids[:, 1:] - 1
+ return logits, token_ids
+
+ return logits